• 제목/요약/키워드: Hurwitz (or generalized) Zeta function

검색결과 10건 처리시간 0.017초

NOTE ON THE MULTIPLE GAMMA FUNCTIONS

  • Ok, Bo-Myoung;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • 제18권2호
    • /
    • pp.219-224
    • /
    • 2002
  • Recently the theory of the multiple Gamma functions, which were studied by Barnes and others a century ago, has been revived in the study of determinants of Laplacians. Here we are aiming at evaluating the values of the multiple Gamma functions ${\Gamma}_n(\frac{1}{2})$ in terms of the Hurwitz or Riemann Zeta functions.

  • PDF

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.

CERTAIN INTEGRAL REPRESENTATIONS OF GENERALIZED STIELTJES CONSTANTS γk(a)

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • 제31권1호
    • /
    • pp.41-53
    • /
    • 2015
  • A large number of series and integral representations for the Stieltjes constants (or generalized Euler-Mascheroni constants) ${\gamma}_k$ and the generalized Stieltjes constants ${\gamma}_k(a)$ have been investigated. Here we aim at presenting certain integral representations for the generalized Stieltjes constants ${\gamma}_k(a)$ by choosing to use four known integral representations for the generalized zeta function ${\zeta}(s,a)$. As a by-product, our main results are easily seen to specialize to yield those corresponding integral representations for the Stieltjes constants ${\gamma}_k$. Some relevant connections of certain special cases of our results presented here with those in earlier works are also pointed out.

BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER BASED ON SUBORDINATE CONDITIONS INVOLVING HURWITZ-LERCH ZETA FUNCTION

  • Murugusundaramoorthy, G.;Janani, T.;Cho, Nak Eun
    • East Asian mathematical journal
    • /
    • 제32권1호
    • /
    • pp.47-59
    • /
    • 2016
  • The purpose of the present paper is to introduce and investigate two new subclasses of bi-univalent functions of complex order defined in the open unit disk, which are associated with Hurwitz-Lerch zeta function and satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$ for functions in the new subclasses. Several (known or new) consequences of the results are also pointed out.

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.

CERTAIN FORMULAS INVOLVING EULERIAN NUMBERS

  • Choi, Junesang
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.373-379
    • /
    • 2013
  • In contrast with numerous identities involving the binomial coefficients and the Stirling numbers of the first and second kinds, a few identities involving the Eulerian numbers have been known. The objective of this note is to present certain interesting and (presumably) new identities involving the Eulerian numbers by mainly making use of Worpitzky's identity.

NOTE ON STIRLING POLYNOMIALS

  • Choi, Junesang
    • 충청수학회지
    • /
    • 제26권3호
    • /
    • pp.591-599
    • /
    • 2013
  • A large number of sequences of polynomials and numbers have arisen in mathematics. Some of them, for example, Bernoulli polynomials and numbers, have been investigated deeply and widely. Here we aim at presenting certain interesting and (potentially) useful identities involving mainly in the second-order Eulerian numbers and Stirling polynomials, which seem to have not been given so much attention.

NOTES ON SOME IDENTITIES INVOLVING THE RIEMANN ZETA FUNCTION

  • Lee, Hye-Rim;Ok, Bo-Myoung;Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제17권1호
    • /
    • pp.165-173
    • /
    • 2002
  • We first review Ramaswami's find Apostol's identities involving the Zeta function in a rather detailed manner. We then present corrected, or generalized formulas, or a different method of proof for some of them. We also give closed-form evaluation of some series involving the Riemann Zeta function by an integral representation of ζ(s) and Apostol's identities given here.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF