• Title/Summary/Keyword: Humidity monitoring

Search Result 441, Processing Time 0.026 seconds

Web-based Real Environment Monitoring Using Wireless Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Kim, Min-Ah;Byeon, Ok-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.207-210
    • /
    • 2005
  • Ubiquitous computing is one of the key technology areas in the "Project on Development of Ubiquitous computing and network technology" promoted by the Ministry of Science and Technology as a frontier business of the $21^{st}$ century in Korea, which is based on the new concept merging physical space and computer-based cyber space. With recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low-power consumption wireless micro sensor nodes have been available. Using these smart sensor nodes, there are many activities to monitor real world, for example, habitat monitoring, earthquake monitoring and so on. In this paper, we introduce web-based real environment monitoring system incorporating wireless sensor nodes. It collects sensing data produced by some wireless sensor nodes and stores them into a database system to analyze. Our environment monitoring system is composed of a networked camera and environmental sensor nodes, which are called Mica2 and developed by University of California at Berkeley. We have modified and ported network protocols over TinyOS and developed a monitoring application program using the MTS310 and MTS420 sensors that are able to observe temperature, relative humidity, light and accelerator. The sensed data can be accessed user-friendly because our environment monitoring system supports web-based user interface. Moreover, in this system, we can setup threshold values so the system supports a function to inform some anomalous events to administrators. Especially, the system shows two useful pre-processed data as a kind of practical uses: a discomfort index and a septicity index. To make both index values, the system restores related data from the database system and calculates them according to each equation relatively. We can do enormous works using wireless sensor technologies, but just environment monitoring. In this paper, we show just one of the plentiful applications using sensor technologies.

  • PDF

Remote Devices Data Monitoring System based on Wireless PDA (무선 PDA 기반의 원격 장치 데이터 모니터링 시스템)

  • Seo, Jung-Hee;Kim, Kil-Young;Park, Hung-Bog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.611-614
    • /
    • 2007
  • This paper suggests a TCP/IP-based remote data monitoring system, which combines PDA (Personal Digital Assistant) and WLAN (Wireless Local Area Network) technologies. Wireless PDA devices are used for remote monitoring of wireless communication by continuously collecting remote device data transmitted from servers such as temperature, humidity and device status, and displaying them on mobile devices. Therefore, remote data monitoring systems that integrate wireless and wired services provide data collection adaptive to administrators and efficient identification of device status.

  • PDF

Design and Construction of Farm Management System by U-IT (U-IT에 의한 농장관리시스템 설계 및 구축)

  • Shin, Jin-Seob;Lee, Jeong-Ihll
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.285-289
    • /
    • 2012
  • In this paper, the farm information system was designed by ubiquitous computing. The irrigation system was set up for growing forest products. Also, the integrated sensing system with the radar sensors would be constructed for sensing the temperature, the humidity and the direction of the wind, ect. And the monitoring programs for workers in the fields were provided for the control and the monitoring the growing conditions of the forest products. Finally the database was constructed for the total monitoring and management system, so the data from sensor system was stored in the database sever for analysing growing environment.

Development of a remote monitoring system for gas detection at the subway station (지하철 역내 가스 검출 원격 모니터링 시스템 구현)

  • Park, Yong-Man;Kim, Hei-Sik;Kim, Gyu-Sik;Lee, Moon-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.439-441
    • /
    • 2007
  • The seoul metropolitan subway has installed 8 lines and about 500 stations to transport 5 million passengers everyday. The underground air pollution level in the subway stations is very severe status, which is very harmful to the commutators and its personals. Although subway roles as such a massive and huge transportation system, the subway doesn't adapt yet any real-time air monitoring system. They have only some hand-held type detector equipments for monitoring air pollution. Therefore subway passengers are exposed to the harmful air pollution environment. The most harmful environmental parameters among the air pollution are known as the dust and sound noise dB level in the subway station. Because the dust is consisted of very small particles, we can't see them easily in dark condition on the platform, but it is very harmful. The monitoring system for air pollution is developed using embedded system attached with 6 different environmental sensors. This system monitors air pollution of dust sound noise, gas, temperature, humidity, inflammable gas, toxic gas in the subway ?station. The sensor unit of the ARM-CPU board and sensor transmits real time environmental data to the main server using Zigbee wireless communication module and TCP/IP network. The main control server receives and displays the real-time environmental data, and it send alarms to the personals when high level value.

  • PDF

Implementation of Pipeline Monitoring System Using Bio-memetic Robots (생체 모방 로봇을 이용한 관로 모니터링 시스템의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Jung, Joo-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.33-44
    • /
    • 2010
  • We present a pipeline monitoring system based on bio-memetic robot in this paper. A bio-memetic robot exploring pipelines measures temperature, humidity, and vibration. The principal function of pipeline monitoring robot for the exploring pipelines is to recognize the shape of pipelines. We use infrared distance sensor to recognize the shape of pipelines and potentiometer to measure the angle of motor mounting infrared distance sensor. For the shape recognition of pipelines, the number of detected pipelines is used during only one scanning of distance. Three fuzzy classifiers are used for the number of detected pipelines, and the classifying results are presented in this paper.

Development of Wearable Device for Monitoring Working Environment in Pig House (양돈장 작업환경 모니터링을 위한 웨어러블 장비개발)

  • Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.71-81
    • /
    • 2020
  • Enclosed pig house are creating an environment with high concentrations of gas and dust. Poor conditions in pig farms reduce pig weight and increase disease and accidents for livestock workers. In the pig house, the high concentration of harmful gas may cause asphyxiation accidents to workers and chronic respiratory disease by long-term exposure. As pig farm workers have been aging and feminized, the damage to the health of the harsh environment is getting serious, and real-time monitoring is needed to prevent the damage. However, most of the measuring devices related to humidity, harmful gas, and fine dust except temperature sensors are exposed to high concentrations of gas and dust inside pig house and are difficult to withstand for a long time. The purpose of this study is to develop an wearable based device to monitor the hazardous environment exposed to workers working in pig farms. Based on the field monitoring and previous researches, the measurement range and basic specifications of the equipment were selected, and wearable based device was designed in terms of utilization, economic efficiency, size and communication performance. Selected H2S and NH3 sensors showed the average error of 5.3% comparing to standard gas concentrations. The measured data can be used to manage the working environment according to the worker's location and to obtain basic data for work safety warning.

Smart Factory's Environment Monitoring System using Bluetooth (블루투스를 이용한 스마트팩토리의 환경 모니터링 시스템)

  • Lee, Hwa-Yeong;Lee, Sung-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.224-226
    • /
    • 2021
  • Recently, in order to increase the efficiency of the product production process, the automation of facilities and devices in the factory is in progress, and a smart factory is being built using ICT and IoT technologies. In order to organically solve many problems occurring in the smart factory, a system for monitoring the wireless communication function between facilities and devices and the manufacturing process environment of the smart factory is required. In this paper, we propose a monitoring system using a Bluetooth module, a temperature/humidity sensor and a fine dust sensor to remotely monitor the process environment of a smart factory. The proposed monitoring system collect Arduino sensor values wirelessly through Bluetooth communication.

  • PDF

Implementation of A Monitoring System using Image Data and Environment Data (영상정보와 환경정보를 이용한 실내 공간 모니터링 시스템 구현)

  • Cha, Kyung-Ae;Kwon, Cha-Uk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The objective of this study is to design a system that automatically monitors the state of interior spaces like offices where lots of people are coming and going through image data and environment data, which includes temperature, humidity, and other conditions, and implement and test related application programs. In practice, there are lots of image data automatically obtained by unmanned equipments, such as certain types of CCTVs, for monitoring situation in usual interior spaces. This image data can be used as a more effective manner by establishing a system that recognizes situation in specific interior spaces based on the relationship between image and environment data. For instance, it is possible to perform unmanned on/off controls for various electronic equipments, such as air conditioners, lights, and other devices, through analyzing the data acquisited from environment sensors (temperature, humidity, and illumination) as dynamic states are not maintained for a specified period of time. For implementing these controls, this study analyzes environment data acquisited from temperature and humidity sensors and image data input from wireless cameras to recognize situation and that can be used to automatically control environment variables configured by users. Experiments were applied in a laboratory where unmanned controls were effectively performed as automatic on/off controls for the air conditioner and lights installed in the laboratory as certain motions were detected or undetected for a specified period of time.

Design and Development of Monitoring System for Subway Station based on USN (USN 기반의 지하역사 모니터링 시스템의 설계 및 개발)

  • Lee, Seok-Cheol;Jeong, Shin-Il;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1629-1639
    • /
    • 2009
  • This paper describes the environmental monitoring system for supporting comfortable subways based on USN. Our development system includes the sensor field based on integrated sensor, monitoring system for supporting the local and remote monitoring and middle-ware performs the collecting, analyzing, and storing the data. In this paper, we installed the temperature, humidity, micro-dust sensor and water-level sensor for supporting the rail-roads and make up the integrated sensor enables to reuse the analog device from 4~20mA output with connection of wireless sensor device. Middleware includes the modules of collecting, analysis, and storing the data and monitoring system supports the local for administrator and remote monitoring for citizen services based on web. The middleware and monitoring in this paper is comprised of some components can reuse and support the change of application and sensors. Our development system supports the mobility of sensor devices and distributes system. Data collection and management function supported by middleware will use assessment.

  • PDF

Remote monitoring system of a vinyl house by web and Labview (Labview와 웹을 활용한 비닐하우스 원격감시 시스템)

  • Park, Sang-gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.725-728
    • /
    • 2009
  • This paper describes remote monitoring system for the various environments of a vinyl house, which was located in rural or outer of urban by use internet web connection system in a long distance office. We have constructed remote monitoring system by use a simple experimental model for the monitoring of various factors which need to operate common vinyl house. The experimental model includes temperature, humidity, smoke and infrared sensors for the measuring and AC 220V light bulb for the controlling in the USN system. Also, we have developed monitoring software by use NI Labview and communicate between PC and sensors through the DAQ-board, USN control board. We use CCD camera and grab board for the real time remote monitoring of wanted image in the house area. The computer server for remote connection is constructed in the local PC with Apache web server, PHP and MySQL ODBC. We construct internet communication system for the monitoring remotely the local environments of a vinyl house system.

  • PDF