• Title/Summary/Keyword: Human body phantom

Search Result 117, Processing Time 0.02 seconds

Shielding 140 keV Gamma Ray Evaluation of Dose by Depth According to Thickness of Lead Shield (140 keV 감마선 차폐 시 납 차폐체 두께에 따른 깊이별 선량 평가)

  • Kim, Ji-Young;Lee, Wang-Hui;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • The present study made a phantom for gamma ray of 140 keV radiated from $^{99m}Tc$, examined shielding effect of lead by thickness of the shielding material, and measured surface dose and depth dose by body depth. The OSL Nano Dot dosimeter was inserted at 0, 3, 15, 40, 90, and 180 mm depths of the phantom, and when there was no shield, 0.2 mm lead shield, 0.5 mm lead shield, The depth dose was measured. Experimental results show that the total cumulative dose of dosimeters with depth is highest at 366.24 uSv without shield and lowest at 94.12 uSv with 0.5 mm lead shield. The shielding effect of 0.2 mm lead shielding was about 30.18% and the shielding effect of 0.5 mm lead shielding was 74.30%, when the total sum of the accumulated doses of radiation dosimeter was 100%. The phantom depth and depth dose measurements showed the highest values at 0 mm depth for all three experiments and the dose decreases as the depth increases. This study proved that the thicker a shielding material, the highest its shielding effect is against gamma ray of 140 keV. However, it was known that shielding material can't completely shield a body from gamma ray; it reached deep part of a human body. Aside from the International Commission on Radiation Units and Measurements (ICRU) recommending depth dose by 10 mm in thickness, a plan is necessary for employees working in department of nuclear medicine where they deal with gamma ray, which is highly penetrable, to measure depth dose by body depth, which can help them manage exposed dose properly.

Comparison of Temperature Distribution in Agar Phantom and Gel Bolus Phantom by Radiofrequency Hyperthermia

  • Jung, Dong Kyung;Kim, Sung Kyu;Lee, Joon Ha;Youn, Sang Mo;Kim, Hyung Dong;Oh, Se An;Park, Jae Won;Yea, Ji Won
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.224-231
    • /
    • 2016
  • The usefulness of Gel Bolus phantom was investigated by comparing the temperature distribution characteristic of the agar phantom produced to investigate the dose distribution characteristic of radiofrequency hyperthermia device with that of the Gel Bolus phantom under conditions similar to those of an agar phantom that can continuously carry out temperature measurement. The temperatures of the agar phantom and the Gel Bolus phantom were raised to $36.5{\pm}3^{\circ}C$ and a temperature sensing was inserted at depths of 5, 10, and 15 cm from the phantom central axis. The temperature increase rate and the coefficient of determination were analyzed while applying output powers of 100 W and 150 W, respectively, at intervals of 1 min for 60 min under conditions where the indoor temperature was in the range $24.5{\sim}27.5^{\circ}C$, humidity was 35~40%, internal cooling temperature of the electrode was $20^{\circ}C$, size of the upper electrode was 250 mm, and the size of the lower electrode was 250 mm. The coefficients of determination of 150 W output power at the depth point of 5 cm from the central axis of the phantom were analyzed to be 0.9946 and 0.9926 in the agar and Gel Bolus phantoms, respectively; moreover, the temperature change equation of the agar and Gel Bolus phantoms with time can be expressed as follows in the state the phantom temperature is raised to $36^{\circ}C:Y(G)$ is equation of Gel Bolus phantoms (in 5 cm depth) applying output power of 150 W. Y(G)=0.157X+36. It can be seen that if the temperature is measured in this case, the Gel Bolus phantom value can be converted to the measured value of the agar phantom. As a result of comparing the temperature distribution characteristics of the agar phantom of a human-body-equivalent material with those of the Gel Bolus phantom that can be continuously used, the usefulness of Gel Bolus phantom was exhibited.

Evaluation of Setup Usefulness of CBCT using Rando Phantom (인체 팬텀(Rando Phantom)을 이용한 CBCT의 Setup 유용성 평가)

  • Jang, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.234-238
    • /
    • 2011
  • This paper will evaluate the usefulness of 3D target of CBCT by comparing human body's posture and position when simulated treatment is being carried out as well as human phantom posture and position using CBCT which is applying OBI. From the Rando Phantom which is located in the datum point moved in parallel and rotationary direction using CBCT. Then the mean and standard deviation difference on images location difference that are acquired were compared with real the Rando Phantom' moved distance. To make a plan of simulated treatment with the same procedure of real radiation therapy, we are going to setup the Rando Phantom. With an assumption that the position is set in accurate place, we measured the setup errors accroding to the change of the translation and rotation. Tests are repeated 10 times to get the standard deviation of the error values. The variability in couch shift after positioning equivalent to average residual error showed lateral $0.2{\pm}0.2$mm, longitudinal $0.4{\pm}0.3$mm, vertical $-0.4{\pm}0.1$mm. The average rotation erroes target localization after simulated $0.4{\pm}0.2$ mm, $0.3{\pm}0.3$ mm, and $0.3{\pm}0.4$ mm. The detection error by rotation is $0{\sim}0.6^{\circ}$ CBCT 3D/3D matching using the Rando Phantom minimized the errors by realizing accurate matching during simulated treatment and patient caring.

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

Design of a Modified Alford Loop Antenna for On-Body Devices (인체 부착형 기기를 고려한 변형된 Alford 루프 안테나 설계)

  • Park, Joongki;Lee, Juneseok;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • In this paper, a modified Alford loop antenna for on-body communication system is proposed. The proposed antenna operating in the ISM band is designed with consideration of human body effect. One of advantages of the Alford loop antenna structure is low-profile, however the Alford loop antenna is not suitable for on-body devices since it does not have a ground plane for other electronic part of on-body system and requires balanced feeding structure. To be embedded on on-body devices, the proposed antenna is design with the unbalanced feed structure and ground. The performance of the proposed antenna is simulated and measured when it is placed on the human body phantom to consider the effect of the human body. The proposed antenna a 10 dB return loss bandwidth over the ISM band and monopole-like radiation pattern with low-profile. The antenna has the surface of appropriate for on-body communication environment.

Development of Radiation Restrictor for Secondary Radiation Shielding of Mobile X-ray Generator (이동형 X선 발생장치의 2차 방사선 차폐를 위한 선속조절기 개발 연구)

  • Koo, Bon-Yeoul;Kim, Gha-Jung
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.397-403
    • /
    • 2018
  • Mobile X-ray generators are used not in the radiation area but in open space, which causes the exposure of secondary radiation to the healthcare professionals, patients, guardians, etc., regardless of their intentions. This study aimed to investigate the shielding effect of the developed radiation restrictor to block the secondary radiation scattered during the use of mobile X-ray generator. Upon setting the condition of mobile X-ray generator with chest AP, spatial doses were measured by the existence of human equivalent phantom and radiation restrictor, and measured by the existences of phantom and radiation restrictor at the same length of 100 cm. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from $-90^{\circ}$ (head direction) to $+90^{\circ}$ (body direction). Upon the study results, spatial doses in all direction were increased by 45% on average when using phantom in the same condition, however, they were decreased by 64% on average when using the developed radiation restrictor. The dose at 100 cm from the center of X-ray was $3.0{\pm}0.08{\mu}Gy$ without phantom and was increased by 40% with $4.2{\pm}0.08{\mu}Gy$ after phantom usage. The dose when using phantom and the developed radiation restrictor was $1.4{\pm}0.08{\mu}Gy$, which was decreased by 66% compared to the case without using them. Therefore, it is considered the scattered radiation can be shielded at 100-150 cm, the regulation of the distance between beds, effectively with the developed radiation restrictor when using mobile X-ray generators, which can lower the radiation exposure to the people nearby including healthcare professionals and patients.

Efficiency and EMF Safety Analysis of Wireless Power Transfer System Using Standard Human Model (표준화된 인체모델을 이용한 공진형 무선전력전송 시스템의 효율 변화 및 인체 안전성 분석)

  • Shin, Hansu;Byun, Jin-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.96-103
    • /
    • 2013
  • In this paper, resonant wireless power transfer systems are designed with double loop resonant coils for the resonant frequency of 150kHz. The transfer efficiency characteristics is analyzed according to the coil size, and the distance and misalignment between the coils. Then the change in efficiency is investigated when a human model is located between the resonant coils using the homogeneous human phantom of IEC-62311 standard. Also, in order to assess the safety of the wireless power transfer system, the induced current density inside the human model is calculated when it is exposed to the magnetic field of a plane wave and resonant coil. Then, the results are compared with the exposure limits in the EMF (electromagnetic field) safety guidelines.

Simulation and assessment of 99mTc absorbed dose into internal organs from cardiac perfusion scan

  • Saghar Salari;Abdollah Khorshidi;Jamshid Soltani-Nabipour
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.248-253
    • /
    • 2023
  • Directly, it is not possible to measure the absorbed dose of radiopharmaceuticals in the organs of the human body. Therefore, simulation methods are utilized to estimate the dose in distinct organs. In this study, individual organs were separately considered as the source organ or target organ to calculate the mean absorption dose, which SAF and S factors were then calculated according to the target uptake via MIRD method. Here, 99mTc activity distribution within the target was analyzed using the definition and simulation of ideal organs by summing the fraction of cumulative activities of the heart as source organ. Thus, GATE code was utilized to simulate the Zubal humanoid phantom. To validate the outcomes in comparison to the similar results reported, the accumulation of activity in the main organs of the body was calculated at the moment of injection and cardiac rest condition after 60 min of injection. The results showed the highest dose absorbed into pancreas was about 21%, then gallbladder 18%, kidney 16%, spleen 15%, heart 8%, liver 8%, thyroid 7%, lungs 5% and brain 2%, respectively, after 1 h of injection. This distinct simulation model may also be used for different periods after injection and modifying the prescribed dose.

TA Study on Patient Exposure Dose Used the Phantom for Interventional Procedure (중재적 시술 시 팬텀을 이용한 환자의 피폭선량 분석)

  • Kang, Byung-Sam;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Because interventional procedure operates looking at premier as real time when perate intervention enemy, by patient is revealed during suitableness time in radiation, side effect such as radiation injury of skin is apt to happen. It established by purpose of study that measure exposure dose that patient receives about these problem, and find solution for radiation injury and repletion method. In this study, we used Rando phantom of identical structure with the human body which becomes accomplished with 4 branch ingredient of the attempt and system equivalent material them and absorbed dose were measured by TLD. According to the laboratory, it shows that operations such as TFCA procedure or uterine myoma embolization are more dangerous than TACE procedure. If both operations are inspected during a short time, it is not affected in being bombed. However, it can lead to palliative agenesis or depilate, definitive agenesis only if operations are repeated more than three times. Dose distibution based on experiment, to reduce radiation exposure to patients result from reduction of scatter ray as we control field size of radiation and protection of side organs except for tumor. also we knew that we can protect patients form radiation exposure, if we increas SOD and decrease SID.

  • PDF

Design and implementation of RF hyperthermia system for deep-seated cancer therapy. (심재성 암치료를 위한 RF hyperthermia system의 설계 및 제작)

  • Yoo, Jae-Hyoung;Park, Mi-Gnon
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1985 no.06
    • /
    • pp.9-12
    • /
    • 1985
  • This paper covers the design and implementation process of RF hypertermia system for cancer therapy. Among many hyperthermic methods, RF capacitive heating method is discussed because it can heat the deep-seated tumors selectively. The RF power oscillator and its applicators were designed and implemented. And the experiments were performed with agar phantom and dog to prove that the system can heat any depth selectively. And the electrical safety and appropriateness of clinical application was proved through the human living-body test.

  • PDF