• Title/Summary/Keyword: Human Phantom

Search Result 266, Processing Time 0.032 seconds

COMPUTATIONAL ANTHROPOMORPHIC PHANTOMS FOR RADIATION PROTECTION DOSIMETRY: EVOLUTION AND PROSPECTS

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.239-250
    • /
    • 2006
  • Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as magnetic resonance (MR) imaging and computed tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed.

A Fundamental Study on the Fabrication of Human Model Bone Phantom using an Entry-Level 3D Printer: using FDM Method for the Femur Model (보급형 3D 프린터를 이용한 인체 모형 뼈 팬텀 제작의 기초연구: Femur 대상으로 적층형 출력 방식 이용)

  • Namkung, Eun-Jae;Kim, Do-Hee;Kim, So-Hui;Park, Se-Eun;Jung, Dabin;Park, Sang-Hyub;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.651-660
    • /
    • 2020
  • The purpose of this study was to create a phantom with a HU value similar to that of the human Femur using a 3D printer to replace the existing pig bone. A total of 372 people were analyzed to determine the HU value of human Femur. Using a 3D printer, a human bone model phantom was fabricated using PLA-Cu 20% and subjected to CT examination. Pig bones were 6 months old pigs, and bones 2 days after slaughter were used. As a result of the examination, the 3D printing phantom made with 80% of the internal filling showed a similar value to all data of the human body (p<0.05), and there was a difference from the pig bone (p>0.05). In addition, in the case of the HU value of Femur by age group, it was confirmed that the value of HU decreased as the age group increased (p<0.05). 3D printing and HU values confirmed a weak negative correlation with respect to the stacking height, but confirmed a strong positive correlation (R2 = 0.996) with 182.13±1.290 in the inner filling (p<0.05). In conclusion, it was confirmed that the human body model phantom using 3D printing can exhibit a similar level of HU value to the human body compared to the existing pig bone phantom, and this study will provide basic data for the production of a human body model phantom using a 3D printer.

Development of Human-Head-Mimicking Phantom for Brain Treatment Using Focused Ultrasound (집속 초음파 뇌 질환 치료를 위한 두부 유사 팬텀의 개발)

  • Min, Jeonghwa;Kim, Juyoung;Noh, Sicheol;Choi, Heungho
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.433-439
    • /
    • 2013
  • In this study, human head-mimicking phantom was developed for brain disease treatment study using focused ultrasound. Acoustic parameters of skin, skull and brain were investigated through literature investigation and adequate substitutes according to each tissue were suggested. In the case of skin phantom, construction ratio of glycerol-based TMM phantom was controlled to mimic real skin. The suitability of skull substitutes was evaluated through measurement of acoustic parameters. In the case of brain phantom, transparent egg white phantom was used to observe thermal properties of focused ultrasound. Combined human-head-mimicking phantom using each substitutes was fabricated for development of brain disease treatment protocol. Denaturation of brain phantom according to ultrasonic condition was observed for validation.

A study on the Effectivness of Hand-made Paraffin Thyroid Phantom (Paraffin을 이용한 Thyroid Phantom제작에 따른 유용성에 관한 연구)

  • Park, Soung-Ock;Lee, In-Ja
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.237-243
    • /
    • 2007
  • Phantoms are very necessary for quality assurance of radio nuclides imaging systems to maintain standards and to ensure reproducibility of test. General quality assurance and instrument quality control are essential in every hospital. The human tissue equivalent materials are aluminum, areryl, water and epoxy..etc. It is very important to select optimum equivalant materials for a phantoms in QC. Especially, paraffin is very similar with human soft tissue in X or Gamma-ray physical characteristics and easy to buy with economically. We made a paraffin thyroid phantom and compare with thyroid areryl phantom, also used commercially in practice. Two small size cold spots(3 and 6 mm diameter) and a hot spot(3 mm diameter) embeded in paraffin phantom. And imaged with $^{99m}TcO_4$ by camera for analysis about spatial resolution and noise at the hot and cold spots. We got some results as below : 1. No difference in counting rate and noise between both arcryl and paraffin thyroid phantoms. 2. The best spatial resolution can be seen 6 cm distance between pinhole collimator and thyroid phantoms(arcryl and paraffin). 3. More optimal spatial resolution could acquired in paraffin thyroid phantom. Paraffin is very similar with human soft tissue in atomic number, density and relative absorbtion function, and can be shaped easily what we wanted. So we can recommendation paraffin as quality assurance phantom because its usefulness, economical benefit and purchasability.

  • PDF

A Study on the Performance Evaluation of Portable Radiation Shielding Apparatus (이동형 방사선 차폐장치의 성능평가에 관한 연구)

  • Koo, Bon-Yeoul;Han, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.289-295
    • /
    • 2018
  • When using a mobile X-ray unit, primary radiation creates medical images and secondary radiation scatters in many directions, which reduces image quality and causes exposure to patients, care givers and medical personnel. The purpose of this study was to develop a radiation shielding system for effectively shielding secondary radiation and evaluate its effectiveness. Using a mobile X-ray unit, spatial dose according to presence of human equivalent phantom and spatial dose using the developed shielding device were measured, and the phantom at 80 cm equidistance from center of X-ray was compared with spatial dose according to use of a shield. Measurements were taken at intervals of 10 cm every $30^{\circ}$ from the head direction($-90^{\circ}$) to the body direction($+90^{\circ}$). In the spatial dose measurement with and without the phantom, when the human equivalent Phantom was used, the spatial dose was increased by 40% in all directions from 40 cm to 100 cm from the central X-ray, and about 88% of the space dose was reduced when using the developed shields with the phantom. The equidistance dose at 80 cm from the central X-ray was increased by 39% from $5.1{\pm}0.26{\mu}Gy$ to $7.1{\pm}0.15{\mu}Gy$ when the human equivalent phantom was used, and when phantom was used and shielding was used, the spatial dose was reduced by about 90% from $7.1{\pm}0.15{\mu}Gy$ to $0.7{\pm}0.07{\mu}Gy$. The spatial dose of natural radiation was measured to be about $0.2{\pm}0.04{\mu}Gy$ when using the developed shielding with Phantom at a distance of 1 m or more. It is expected that by using the developed shielding system, it will be possible to effectively reduce secondary radiation dose received in all directions and to ensure safe imaging.

Usefulness of a Functional Tracheobronchial Phantom for Interventional Procedure (중재 시술용 기능성 기관-기관지 팬텀의 유용성)

  • Kim, Tae-Hyung;Lim, Cheong-Hwan;Kim, Jeong-Koo;Kim, Myeong-Soo;Choi, Won-Chan;Lim, Jin-Oh;Lee, Kwang-Jong;Park, In-Ae;Kim, Mi-Ok;Jung, Eun-Mi;Shin, Ryung-Mi;Jung, Seung-Ki;Youn, Sun-Hee
    • Journal of radiological science and technology
    • /
    • v.26 no.4
    • /
    • pp.27-32
    • /
    • 2003
  • To evaluate usefulness of a functional tracheobronchial phantom for interventional procedure. The functional phantom was made as a actual size with human normal anatomy used silicone and a paper clay mold. A tracheobronchial-shape clay mold was placed inside a square box and liquid silicone was poured. After the silicone was formed, the clay was removed. We measured film density and tracheobronchial angle at the human, animal and phantom, respectively. The film density of trachea part were 0.76(${\pm}0.011$) in human, 0.97(${\pm}0.015$) in animal, 0.45(${\pm}0.016$) in phantom. The tracheobronchial bifurcation part measured 0.51(${\pm}0.006$) in human, 0.65(${\pm}0.005$) in animal, 0.65(${\pm}0.008$) in phantom. The right bronchus part measured 0.14(${\pm}0.008$) in human, 0.59(${\pm}0.014$) in animal and 0.04(${\pm}0.007$) in phantom. The left bronchus were 0.54(${\pm}0.004$) in human, 0.54(${\pm}0.008$) in animal and 0.08(${\pm}0.008$) in phantom. At the stent part were 0.54(${\pm}0.004$) in human, 0.59(${\pm}0.011$) in animal and 0.04(${\pm}0.007$) in phantom, respectively. The tracheobronchial angle of the left bronchus site were $42.6({\pm}2.07)^{\circ}$ in human, $43.4({\pm}2.40)^{\circ}$ in animal and $35({\pm}2.00)^{\circ}$ in phantom, respectively. The right bronchus site were $32.8({\pm}2.77)^{\circ}$ in human, $34.6({\pm}1.94)^{\circ}$ in animal and $50.2({\pm}1.30)^{\circ}$ in phantom, respectively. The phantom was useful for in-vitro testing of tracheobronchial interventional procedure, since it was easy to reproduce.

  • PDF

Ultrasonic Phantom Based on Plastic Material for Elastography (초음파 탄성 영상 평가를 위한 플라스틱 기반의 팬텀 개발)

  • Ahn, Dong-Ki;Joung, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.368-373
    • /
    • 2009
  • A human tissue mimicking phantom is constructed to assess the performance of a medical ultrasound elasticity imaging system. In a human body, the tumor or cancer is stiffer than its surrounding normal tissue. A technique fur imaging the elasticity of such a tissue is referred to as elastography. Homogeneous elasticity phantoms with differing Young's moduli are constructed using a plastic hardener and softener to simulate the mechanical characteristics of a diseased human tissue. The Young's modulus of the fabricated homogeneous phantom materials were measured from 11.1 to 79.6 kPa depending on the mixing ratio of the amount of the hardener to that of the softener. An ultrasound lesion mimicking phantom was made of these materials, and ultrasound elasticity imaging was performed on it. It is confirmed in this paper that the fabricated plastic-based elasticity phantom is useful in representing the elastic characteristics of a human tissue.

Evaluation of Absorbed Dose for the Right Lung and Surrounding Organs of the Computational Human Phantom in Brachytherapy by Monte Carlo Simulation (근접방사선치료 시 몬테카를로 전산모사를 이용한 인체전산팬텀의 우측 폐와 주변 장기 선량평가)

  • Lee, Jun-Seong;Kim, Yang-Soo;Kim, Min-Gul;Kim, Jung-Soo;Lee, Sun-Young
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.443-451
    • /
    • 2020
  • This study is to evaluate absorbed dose from right lung for brachytherapy and to estimate the effects of tissue heterogeneities on dose distribution for Iridium-192 source using Monte Carlo simulation. The study employed Geant4 code as Monte Carlo simulation to calculate the dosimetry parameters. The dose distribution of Iridium-192 source in solid water equivalent phantom including aluminium plate or steel plate inserted was calculated and compared with the measured dose by the ion chamber at various distances. And the simulation was used to evaluate the dose of gamma radiation absorbed in the lung organ and other organs around it. The dose distribution embedded in right lung was calculated due to the presence of heart, thymus, spine, stomach as well as left lung. The geometry of the human body was made up of adult male MIRD type of the computational human phantom. The dosimetric characteristics obtained for aluminium plate inserted were in good agreement with experimental results within 4%. The simulation results of steel plate inserted agreed well with a maximum difference 2.75%. Target organ considered to receive a dose of 100%, the surrounding organs were left the left lung of 3.93%, heart of 10.04%, thymus of 11.19%, spine of 12.64% and stomach of 0.95%. When the statistical error is performed for the computational human phantom, the statistical error of value is under 1%.

Contralateral Breast Doses Depending on Treatment Set-up Positions for Left-sided Breast Tangential Irradiation (좌측 유방암 환자의 방사선 치료 시 환자자세에 따른 반대편 유방의 산란선량 측정)

  • Joo, Chan Seong;Park, Su Yeon;Kim, JongSik;Choi, Byeong Gi;Chung, Yoonsun;Park, Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.175-181
    • /
    • 2015
  • Purpose : To evaluate Contralateral Breast Doses with Supine and Prone Positions for tangential Irradiation techniques for left-sided breast Cancer Materials and Methods : We performed measurements for contralateral doses using Human Phantom at each other three plans (conventional technique, Field-in-Field, IMRT, with prescription of 50 Gy/25fx). For the measurement of contralateral doses we used Glass dosimeters on the 4 points of Human Phantom surface (0 mm, 10 mm, 30 mm, 50 mm). For the position check at every measurements, we had taken portal images using EPID and denoted the incident points on the human phantom for checking the constancy of incident points. Results : The contralateral doses in supine position showed a little higher doses than those in prone position. In the planning study, contralateral doses in the prone position increased mean doses of 1.2% to 1.8% at each positions while those in the supine positions showed mean dose decreases of 0.8% to 0.9%. The measurements using glass dosimeters resulted in dose increases (mean: 2.7%, maximum: 4% of the prescribed dose) in the prone position. In addition, the delivery techniques of Field-in-field and IMRT showed mean doses of 3% higher than conventional technique. Conclusion : We evaluated contralateral breast doses depending on different positions of supine and prone for tangential irradiations. For the phantom simulation of set-up variation effects on contralateral dose evaluation, although we used humanoid phantom for planning and measurements comparisons, it would be more or less worse set-up constancy in a real patient. Therefore, more careful selection of determination of patient set-up for the breast tangential irradiation, especially in the left-sided breast, should be considered for unwanted dose increases to left lung and heart. In conclusion, intensive patient monitoring and improved patient set-up verification efforts should be necessary for the application of prone position for tangential irradiation of left-sided breast cancer.

  • PDF

Meaning of Reality on Television -Focused on <THE WORLD AS PHANTOM AND AS MATRIX>, of Guünter Anders- (텔레비전에서 실재가 가진 의미 귄터 안더스의 <팬텀과 매트릭스로서의 세계>를 중심으로)

  • Shin, Shang-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.60-71
    • /
    • 2014
  • Images of TV that crossed the reality & the virtual reality have been discussed for a long time, Then, With what feature can TV make messages of the reality & the virtual reality maintain to achieve such a target, and in which situation will the feature be exposed? One who answered first about these questions is a German critic, G$\ddot{u}$nter Anders. Anders called the reality confused with the reality and the confused world of the virtual reality Phantom, and thought human beings would live in the reproduced world created by media machine in the long run as a world that the Phantom created would be gloomy and confusing. The media, themselves, become images, and an image creates another image. Through this process, human beings became unaware of which image the reality was indeed. As TV often created these situations, we have been already seduced into the deep Phantom world before discussing right or wrong of the situation. Of course, the media reality & the reality can't be strictly distinguished. Because the means that help to form judgement of viewers is the media. The subject of practical judgement is the media reality not human beings.