• Title/Summary/Keyword: Human Motion Tracking

Search Result 155, Processing Time 0.021 seconds

Human Body Motion Tracking Using ICP and Particle Filter (반복 최근접점와 파티클 필터를 이용한 인간 신체 움직임 추적)

  • Kim, Dae-Hwan;Kim, Hyo-Jung;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.977-985
    • /
    • 2009
  • This paper proposes a real-time algorithm for tracking the fast moving human body. Although Iterative closest point (ICP) algorithm is suitable for real-time tracking due to its efficiency and low computational complexity, ICP often fails to converge when the human body moves fast because the closest point may be mistakenly selected and trapped in a local minimum. To overcome such limitation, we combine a particle filter based on a motion history information with the ICP. The proposed human body motion tracking algorithm reduces the search space for each limb by employing a hierarchical tree structure, and enables tracking of the fast moving human bodies by using the motion prediction based on the motion history. Experimental results show that the proposed human body motion tracking provides accurate tracking performance and fast convergence rate.

Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter (파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적)

  • Kim, Hyung-Bok;Ko, Kwang-Eun;Kang, Jin-Shig;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.106-111
    • /
    • 2011
  • Video-based detection and tracking of moving objects has been widely used in real-time monitoring systems and a videoconferencing. Also, because object motion tracking can be expanded to Human-computer interface and Human-robot interface, Moving object tracking technology is one of the important key technologies. If we can track a specified object in an environment of multiple moving objects, then there will be a variety of applications. In this paper, we introduce a specified object motion tracking using particle filter. The results of experiments show that particle filter can achieve good performance in single object motion tracking and a specified object motion tracking in an environment of multiple moving objects.

Human-Computer Natur al User Inter face Based on Hand Motion Detection and Tracking

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.501-507
    • /
    • 2012
  • Human body motion is a non-verbal part for interaction or movement that can be used to involves real world and virtual world. In this paper, we explain a study on natural user interface (NUI) in human hand motion recognition using RGB color information and depth information by Kinect camera from Microsoft Corporation. To achieve the goal, hand tracking and gesture recognition have no major dependencies of the work environment, lighting or users' skin color, libraries of particular use for natural interaction and Kinect device, which serves to provide RGB images of the environment and the depth map of the scene were used. An improved Camshift tracking algorithm is used to tracking hand motion, the experimental results show out it has better performance than Camshift algorithm, and it has higher stability and accuracy as well.

Human Face Tracking and Modeling using Active Appearance Model with Motion Estimation

  • Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.49-56
    • /
    • 2017
  • Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

Tracking and Interaction Based on Hybrid Sensing for Virtual Environments

  • Jo, Dongsik;Kim, Yongwan;Cho, Eunji;Kim, Daehwan;Kim, Ki-Hong;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.356-359
    • /
    • 2013
  • We present a method for tracking and interaction based on hybrid sensing for virtual environments. The proposed method is applied to motion tracking of whole areas, including the user's occlusion space, for a high-precision interaction. For real-time motion tracking surrounding a user, we estimate each joint position in the human body using a combination of a depth sensor and a wand-type physical user interface, which is necessary to convert gyroscope and acceleration values into positional data. Additionally, we construct virtual contents and evaluate the validity of results related to hybrid sensing-based whole-body tracking of human motion methods used to compensate for the occluded areas.

Model-based Body Motion Tracking of a Walking Human (모델 기반의 보행자 신체 추적 기법)

  • Lee, Woo-Ram;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.75-83
    • /
    • 2007
  • A model based approach of tracking the limbs of a walking human subject is proposed in this paper. The tracking process begins by building a data base composed of conditional probabilities of motions between the limbs of a walking subject. With a suitable amount of video footage from various human subjects included in the database, a probabilistic model characterizing the relationships between motions of limbs is developed. The motion tracking of a test subject begins with identifying and tracking limbs from the surveillance video image using the edge and silhouette detection methods. When occlusion occurs in any of the limbs being tracked, the approach uses the probabilistic motion model in conjunction with the minimum cost based edge and silhouette tracking model to determine the motion of the limb occluded in the image. The method has shown promising results of tracking occluded limbs in the validation tests.

3D Face Tracking using Particle Filter based on MLESAC Motion Estimation (MLESAC 움직임 추정 기반의 파티클 필터를 이용한 3D 얼굴 추적)

  • Sung, Ha-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.883-887
    • /
    • 2010
  • 3D face tracking is one of essential techniques in computer vision such as surveillance, HCI (Human-Computer Interface), Entertainment and etc. However, 3D face tracking demands high computational cost. It is a serious obstacle to applying 3D face tracking to mobile devices which usually have low computing capacity. In this paper, to reduce computational cost of 3D tracking and extend 3D face tracking to mobile devices, an efficient particle filtering method using MLESAC(Maximum Likelihood Estimation SAmple Consensus) motion estimation is proposed. Finally, its speed and performance are evaluated experimentally.

Human Motion Tracking by Combining View-based and Model-based Methods for Monocular Video Sequences (하나의 비디오 입력을 위한 모습 기반법과 모델 사용법을 혼용한 사람 동작 추적법)

  • Park, Ji-Hun;Park, Sang-Ho;Aggarwal, J.K.
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.657-664
    • /
    • 2003
  • Reliable tracking of moving humans is essential to motion estimation, video surveillance and human-computer interface. This paper presents a new approach to human motion tracking that combines appearance-based and model-based techniques. Monocular color video is processed at both pixel level and object level. At the pixel level, a Gaussian mixture model is used to train and classily individual pixel colors. At the object level, a 3D human body model projected on a 2D image plane is used to fit the image data. Our method does not use inverse kinematics due to the singularity problem. While many others use stochastic sampling for model-based motion tracking, our method is purely dependent on nonlinear programming. We convert the human motion tracking problem into a nonlinear programming problem. A cost function for parameter optimization is used to estimate the degree of the overlapping between the foreground input image silhouette and a projected 3D model body silhouette. The overlapping is computed using computational geometry by converting a set of pixels from the image domain to a polygon in the real projection plane domain. Our method is used to recognize various human motions. Motion tracking results from video sequences are very encouraging.