DOI QR코드

DOI QR Code

Specified Object Tracking in an Environment of Multiple Moving Objects using Particle Filter

파티클 필터를 이용한 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적

  • 김형복 (중앙대학교 전자전기공학부) ;
  • 고광은 (중앙대학교 전자전기공학부) ;
  • 강진식 (제주대학교 통신공학과) ;
  • 심귀보 (중앙대학교 전자전기공학부)
  • Received : 2010.12.27
  • Accepted : 2011.02.10
  • Published : 2011.02.25

Abstract

Video-based detection and tracking of moving objects has been widely used in real-time monitoring systems and a videoconferencing. Also, because object motion tracking can be expanded to Human-computer interface and Human-robot interface, Moving object tracking technology is one of the important key technologies. If we can track a specified object in an environment of multiple moving objects, then there will be a variety of applications. In this paper, we introduce a specified object motion tracking using particle filter. The results of experiments show that particle filter can achieve good performance in single object motion tracking and a specified object motion tracking in an environment of multiple moving objects.

영상 기반의 움직이는 객체의 검출 및 추적은 실시간 감시 시스템이나 영상회의 시스템 등에서 널리 사용되어지고 있다. 또한 인간-컴퓨터 상호 작용(Human-Computer Interface)이나 인간-로봇 상호 작용(Human-Robot Interface)으로 확장되어 사용할 수 있기 때문에 움직이는 객체의 추적 기술은 중요한 핵심 기술 중에 하나이다. 특히 다중 객체의 움직임 환경에서 특정 객체의 움직임만을 추적할 수 있다면 다양한 응용이 가능할 것이다. 본 논문에서는 파티클 필터를 이용한 특정 객체의 움직임 추적에 관하여 연구 하였다. 실험 결과들로부터 파티클 필터를 이용한 단일 객체의 움직임 추적과 다중 객체의 움직임 환경에서 특정 객체의 움직임 추적에서 좋은 결과를 얻을 수 있었다.

Keywords

References

  1. J. L. Barron, et.all, “Systems and Experiment: Performance of Optical Flow Techniques”, International Journal of Computer Vision, Vol. 12, No. 1, pp. 43-77, 1994. https://doi.org/10.1007/BF01420984
  2. Y. Q. Shi and X. Xia, “A Thresholding Multiresolution Block Matching Algorithm”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 7, No. 2, April 1997. https://doi.org/10.1109/76.564124
  3. Chan, E. and Panchanathan, S., “Review of Block Matching Based Motion Estimation Algorithm for Video Compression”, CCECE/ CCGEI, the Proceedings of Canadian Conference on Electrical and Computer Engineering, Canada, Vol. 1, pp. 151-154, September 1993.
  4. Yong-Sheng Chen, Yi-Ping Hung, Chiou-Shann Fuh, “Fast Block Matching Algorithm Based on the Winner-Update Strategy”, IEEE Transactions on Image Transactions on Image Processing, Vol. 10, no. 8, August 2001. https://doi.org/10.1109/83.935037
  5. Greg Welch, Gary Bishop, An Introduction to the Kalman Filter, UNC-Chapel Hill, TR 95-041, July 24, 2006.
  6. Simon J. Julier, Jeffrey K. Uhlmann, A New Extension of the Kalman Filter to Nonlinear Systems, 1997.
  7. Eric A. Wan and Rudolph van der Merwe, ”The Unscented Kalman Filter for Nonlinear Estimation”, AS-SPCC, pp. 153-158, 2000.
  8. M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp, “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”, IEEE Transactions on Signal Prpcessing, Vol. 50, No. 2, February 2002. https://doi.org/10.1109/78.978374
  9. Y. Q. Shi and X. Xia, “A Thresholding Multiresolution Block Matching Algorithm”, IEEE Transactions on Cricuits and Systems for Video Techmology, Vol. 7, No. 2, April 1997. https://doi.org/10.1109/76.564124
  10. Sangoh Jeong, “Histogram-Based Color Image Retrieval”, Psych221/EE362 Project Report, 2001

Cited by

  1. Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction vol.12, pp.1, 2012, https://doi.org/10.5391/IJFIS.2012.12.1.60
  2. Algorithm Implementation for Detection and Tracking of Ships Using FMCW Radar vol.16, pp.1, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.1.1
  3. Tracking Method for Moving Object Using Depth Picture vol.19, pp.4, 2016, https://doi.org/10.9717/kmms.2016.19.4.774
  4. Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter vol.20, pp.8, 2016, https://doi.org/10.6109/jkiice.2016.20.8.1537