DOI QR코드

DOI QR Code

Use of Fuzzy technique for Calculating Degree of Collision Risk in Obstacle Avoidance of Unmanned Underwater Vehicles

퍼지기법을 이용한 무인잠수정의 장애물회피를 위한 충돌위험도 산출

  • Jung, Hee (Department of Computer Science, Gyeongsang National University) ;
  • Kim, Seong-Gon (LG Electronics) ;
  • Kim, Yong-Gi (Department of Computer Science, Gyeongsang National University)
  • 정희 (경상대학교 컴퓨터과학과 및 컴퓨터정보통신연구소) ;
  • 김성곤 (LG전자 연구소) ;
  • 김용기 (경상대학교 컴퓨터과학과 및 컴퓨터정보통신연구소)
  • Received : 2010.05.28
  • Accepted : 2011.02.03
  • Published : 2011.02.25

Abstract

This paper introduces a technique for calculating the degree of collision risk used in collision avoidance system of AUVs. The collision risk will be reckoned with the fuzzy inference, which uses TCPA(Time of the Closest Point of Approach) and DCPA(Distance of the Closest Point of Approach) as factors. A method to obtain TCPA and DCPA for 3-dimension is suggested. The degree of collision risk is provided to collision avoidance system, and is verified the effectiveness through simulation.

본 연구는 주변 환경정보와 장애물정보, 위치정보를 이용하여 무인잠수정의 운항 환경에 존재하는 다양한 장애물들에 대한 충돌위험도를 산출하는 시스템을 제안한다. 충돌위험도는 퍼지추론을 사용하여 산출하며, TCPA, DCPA, 거리를 인자로 사용하게 된다. 또한 삼차원환경에서 TCPA와 DCPA를 획득하는 방법을 제안한다. 충돌위험도는 충돌회피시스템에 제공되며, 시뮬레이션을 통하여 그 경제성과 안전성에서의 효율성을 보인다.

Keywords

References

  1. Hasegawa, K., “Automatic Collision Avoidance System for Ship using Fuzzy Control”, 8th Ship Control System Symposium, Hague, 1987.
  2. Hammer, A. and Hara, K., “Knowledge Acquisition for Collision Avoidance Maneuver by Ship Handling Simulator”, MARSIM & ICSA 90, tokyo, 1990.
  3. Hara, K and Hammer, A., “A safe Way of Collision Avoidance Maneuver based on Maneuvering Standard using Fuzzy Reasoning Model”, MARSIM 93, St. John’s, 1993.
  4. Imazu, H. and Koyama, T., “The Determination Collision Avoidance Action” The Journal of Japan Institute of Navigation, Jan., 1984.
  5. Imazu, H. and Koyama, T., “The Optimization of the Criterion for Collision Avoidance Action” The Journal of Japan Insistute of Navigation, Sep., 1984.
  6. 이한진, “FUZZY 이론을 이용한 충돌 회피 기법 연구”, 서울대학교, 1993.
  7. 김은경, “지능형 자율 운항 제어 기술을 위한 자료 융합시스템”, 경상대학교, 2002.
  8. Hui, N. B., Mahendar, V., and Pratihar, D., “Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches”, Fuzzy sets and systems, v.157, no.16, 2006.
  9. Shin, D., Na, S., and Kim, J., “Fuzzy neural networks for obstacle pattern recognition and collision avoidance of fish robots”, Soft computing : a fusion of foundations, methodologies and applications, v.12, no.7, 2008.
  10. Lee, Y.-I., Kim, Y.-G., and Kohout, L. J., “An intelligent collision avoidance system for AUVs using fuzzy relational products”, Information sciences, v.158, 2004.
  11. Kanakakis, V., Valavanis, K. P., and Tsourveloudis, N. C., “Fuzzy-Logic Based Navigation of Underwater Vehicles”, Journal of intelligent & robotic systems, v.40, no.1, 2004.
  12. Zavlangas, P., and Tzafestas, S., “Motion control for mobile robot obstacle avoidance and navigation: a fuzzy logic-based approach”, Systems analysis, modelling, simulation, v.43, no.12, 2003.
  13. Ye, C., Yung, N., and Wang, D., “A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance”, IEEE transactions on systems, man, and cybernetics. v.33, no.1, 2003. https://doi.org/10.1109/TSMCB.2003.808179
  14. Yang, W., Watanuki, K., and Zhao, S., “A quick intelligent control system for a mobile robot to avoid collision with moving obstacles”, Microsystem technologies : sensors, actuators, systems integration, v.11, no.8/10, 2005.
  15. Liu, Y.-H., Du, X.-M., and Yang, S.-H., “The Design of a Fuzzy-Neural Network for Ship Collision Avoidance”, Lecture notes in computer science, v.3930, 2006.
  16. Lee, Y.-I., and Kim, Y.-G., “A Collision Avoidance System for Autonomous Ship Using Fuzzy Relational Products and COLREGs”, Lecture notes in computer science, v.3177, 2004.
  17. Yen, J., Wang, H., and Liao, J., “A method for automatic generation of a fuzzy model” Industrial Fuzzy Control and Intelligent Systems, 1993.
  18. Castro, J. L., “Fuzzy logic controllers are universal approximators”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 25, Issue 4, 1995. https://doi.org/10.1109/21.370193
  19. 김용기, “지능형 자율운항 제어기술(2단계),” 대학기초연구보고서, 국방과학연구소, 2005.12.
  20. Kim, S.-G., and Kim, Y.-G., “An Autonomous navigation system for unmanned underwater vehicles", in Underwater Vehicles, ISBN 978-953-7619-49-7, I-Tech publishing, Austria, 2009.

Cited by

  1. Implementation of an Intelligent System for Identifying Abnormal Navigating Ships vol.22, pp.1, 2012, https://doi.org/10.5391/JKIIS.2012.22.1.75
  2. A Study on the Information Management System Support for the Intelligent Autonomous Navigation Systems vol.25, pp.3, 2015, https://doi.org/10.5391/JKIIS.2015.25.3.279