• 제목/요약/키워드: Hot Water layer

검색결과 97건 처리시간 0.024초

Discharge header design inside a reactor pool for flow stability in a research reactor

  • Yoon, Hyungi;Choi, Yongseok;Seo, Kyoungwoo;Kim, Seonghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2204-2220
    • /
    • 2020
  • An open-pool type research reactor is designed and operated considering the accessibility around the pool top area to enhance the reactor utilization. The reactor structure assembly is placed at the bottom of the pool and filled with water as a primary coolant for the core cooling and radiation shielding. Most radioactive materials are generated from the fuel assemblies in the reactor core and circulated with the primary coolant. If the primary coolant goes up to the pool surface, the radiation level increases around the working area near the top of the pool. Hence, the hot water layer is designed and formed at the upper part of the pool to suppress the rising of the primary coolant to the pool surface. The temperature gradient is established from the hot water layer to the primary coolant. As this temperature gradient suppresses the circulation of the primary coolant at the upper region of the pool, the radioactive primary coolant rising up directly to the pool surface is minimized. Water mixing between these layers is reduced because the hot water layer is formed above the primary coolant with a higher temperature. The radiation level above the pool surface area is maintained as low as reasonably achievable since the radioactive materials in the primary coolant are trapped under the hot water layer. The key to maintaining the stable hot water layer and keeping the radiation level low on the pool surface is to have a stable flow of the primary coolant. In the research reactor with a downward core flow, the primary coolant is dumped into the reactor pool and goes to the reactor core through the flow guide structure. Flow fields of the primary coolant at the lower region of the reactor pool are largely affected by the dumped primary coolant. Simple, circular, and duct type discharge headers are designed to control the flow fields and make the primary coolant flow stable in the reactor pool. In this research, flow fields of the primary coolant and hot water layer are numerically simulated in the reactor pool. The heat transfer rate, temperature, and velocity fields are taken into consideration to determine the formation of the stable hot water layer and primary coolant flow. The bulk Richardson number is used to evaluate the stability of the flow field. A duct type discharge header is finally chosen to dump the primary coolant into the reactor pool. The bulk Richardson number should be higher than 2.7 and the temperature of the hot water layer should be 1 ℃ higher than the temperature of the primary coolant to maintain the stability of the stratified thermal layer.

자동차 열간 프레스 가공 부품의 내식성에 관한 연구 (A Study on the Corrosion Resistance of Hot Stamped Automotive Parts)

  • 유지홍;남승만
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.25-30
    • /
    • 2010
  • The authors have studied on the corrosion resistance of the hot stamped steel sheets for the application to automotive parts. Recently automotive companies have focused on the hot stamped parts to meet the light weighting needs and the safe reason. Because of the cost reduction of the hot stamped parts, automotive companies increase the usage of the coated steel sheets, especially Al-Si coated steel sheets. The coated layer of Al-Si coated steel sheets contains up to 50% of Fe, which was diffused from the steel sheet, after hot stamping. The hot stamped steel sheet was not phosphated due to the oxidation layer of the coating, however, the result of the water resistance test is similar to that of the conventional GA steel sheets. The pitting depth and the weight reduction of the coated layer of hot stamped steel sheets are less than those of GA steel.

THERMALLY DRIVEN BUOYANCY WITHIN A HOT LAYER DUE TO SPRINKLER OPERATION

  • Nyankina, K.;F Turan, O.
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.625-632
    • /
    • 1997
  • A two-dimensional zone-like model is developed to predict the interaction between hot gas layer and water droplets after sprinkler activation. The model combines the motion equations for each droplet with heat and mass transfer between the gas and water. The results indicate that negative buoyancy in the hot layer can only be obtained if the initial temperature profile is uniform. If an experimental profile Is used instead, positive buoyancy results. This conclusion has been confirmed with experimental data.

  • PDF

지중 배편케이블의 열화에 미치는 온수의 영향 (Effects of Hot Water on the Aging of URD Power Cables)

  • 한재홍;송일근;김주용;이병성;정종욱
    • 한국전기전자재료학회논문지
    • /
    • 제15권7호
    • /
    • pp.609-614
    • /
    • 2002
  • In this study, we investigated the effects of hot water on the aging of URD power cables due to the hot water ingress to power distribution lines. Hot water contacted and non-contacted cables extracted from 2 distribution lines were characterized by the measurement of oxidation induction time(OIT) and chemical structure. In OIT measurement, hot water contacted cables showed the shorter OIT than non-contacted ones. Especially, hot water contacted insulation layer near insulation shield showed the shortest OIT. In chemical structure analysis, the antioxidant content was decreased and the acid concentration was increased by hot water ingress. From this results, it can be concluded that the hot water ingress to power cable may be accelerate the aging by means of antioxidant consumption.

국산(國産) 및 외국산(外國産) 수종(樹種)의 열수추출물(熱水抽出物)이 시멘트경화(硬化)에 미치는 영향(影響)에 대한 박층(薄層)크로마토그래피적(的) 분석(分析) (Thin Layer Chromatography on the Influence of Hot Water Extractives of Domestic and Foreign Wood Species on the Cement Setting)

  • 서진석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권2호
    • /
    • pp.67-72
    • /
    • 1993
  • Hot water extractives of sawdust/particle from domestic and foreign wood species, which were composed of pitch pine, Korean pine, larch, Italy poplar, acacia and oak as Korean wood species, Malaysian oil palm and German spruce were quantitatively analyzed with thin layer chromatography. Sugar components of saccharose, galactose, glucose, fructose and arabinose were contained in these wood species. It was assumed that arabinose and glucose are major inhibitory components against cement hardening in larch and oil palm, respectively, since both species contain a large amount of each sugar. In contrast, fructose might not influence so badly on a cement hardening, when considering that fructose was contained much in Italy poplar with a good cement hardening character. Galactose was a minor component.

  • PDF

고온층계통의 이온교환기에 의한 연구로 수조 상부 방사선의 저감효과에 대한 연구 (Study for Reduction Effect of Pool Top Radiation in Research Reactor by Using Ion Exchanger of Hot Water Layer)

  • 박용철;박종호
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.40-47
    • /
    • 1999
  • A hot water layer (HWL hereinafter) was installed at the depth of 1.2 m from the pool surface to reduce the radiation level at the pool top. After the HWL system was improved by the replacement of the filter with the Ion Exchanger to capture the Na-24, to purify the pool water of HWL and finally to reduce the radiation at the pool top. It was confirmed by the performance test of the pump and the measurement of the pressure difference through the Ion Exchanger and the strainer, that the flow characteristics of HWL system was not adversely affected after the system modification. Also the flow analysis using the pressure loss coefficients of the Ion Exchanger and strainer, calculated by the Darcy formula, could predict the flow variations by pressure changes within $10\%$ error in comparison with the field test results. It was also confirmed that HWL was maintained with the depth of 1.2 m from the pool surface because each electric water heater was electrically and thermodynamically maintained at 30 kW and the temperature of HWL was maintained with $5^{\circ}C$ higher temperature than that of pool water. Finally, it was confirmed that the pool top radiation was saturated and stabilized below 10000 nG/hr within 24 hours as the ion exchanger captured the main nucleus, Na-24 and purified the pool water of HWL.

  • PDF

긴 지연시간을 갖는 온수난방 제어시스템의 디지틀 가변구조제어 (Digital variable structure control of a hot-water heating control system with long dead time)

  • 안병천;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.232-237
    • /
    • 1991
  • Digital Variable Structure Controller(DVSC) is proposed to control variable speed recirculating pump for hot-water heating control system. In this study, nonlinear sliding line is used beyond output error boundary layer and PID sliding line is used within the layer. For long dead time compensation, constraint is added to Smith predictor algorithm. Steady state error is eliminated by using the proposed sliding line in spite of heating load change. By decreasing sampling time, good sliding motion is yielded but system output noise bv flow dynamics is amplified.

  • PDF

태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향) (Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate))

  • 우종수;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.

온탕소독과 prochloraz 침지소독이 벼 종자에 감염된 Fusarium fujikuroi의 포자와 균사의 형태에 미치는 영향에 대한 전자현미경적 연구 (Electron Microscopic Study for the Influence of Soaking in Hot Water and Prochloraz Solution on Spore and Mycelium of Fusarium fujikuroi Infected in Rice Seed)

  • 박우식;예완해;이세원;한성숙;이준성;임춘근;이용환
    • 식물병연구
    • /
    • 제14권3호
    • /
    • pp.176-181
    • /
    • 2008
  • 본 연구는 키다리병에 심하게 감염된 종자를 온탕침법과 prochloraz 유제로 종자소독 시 그 효과가 떨어지는 원인을 규명하기 위해 시행하였다. 키다리병이 발병한 포장에서 수확한 종자의 경우 병원균이 벼 종자의 배와 배유 안쪽까지 감염되어 있었다. $60^{\circ}C$에서 10분 동안 온탕 소독한 종자의 경우 종피 표면의 균사는 파괴되어 비정상적인 반면 배 주피 안쪽에 존재하는 균사는 정상적인 형태로 존재하였다. 포자는 종피 표면에서 비정상적인 포자와 정상적인 포자를 모두 확인하였다. prochloraz 유제로 $30^{\circ}C$ 24시간 침지소독 한 경우 종피의 균사는 완전히 파괴되었으나 포자는 정상과 비정상 포자 모두 확인할 수 있었다. 이러한 결과를 통해 온탕소독의 경우 종피 같은 물리적 한계로 인해 고열이 병원균에 전달되지 못하고, prochloraz의 경우 병원균 포자를 완전히 사멸시키기 못하기 때문에 종자소독 효과가 떨어짐을 알 수 있었다.

고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구 (Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs)

  • 강정호;이상건;남진현;김찬중
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF