Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs

Jung Ho Kang¹, Sang Gun Lee¹, Jin Hyun Nam², and Chang-Jung Kim³

Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

Keywords: 고분자전해질연료전지(Polymer Electrolyte Membrane Fuel Cell), 공극-네트워크(Pore-network), 기체확산층(Gas Diffusion Medium), 미세다공층(Microporous Layer), 기체확산층(Gas Diffusion Layer)

1. 서 론

연료전지의 연료와 산화제의 전기화학적 직점 결합을 통해 전기에너지를 생산하는 에너지 변화장치로, 연기관이 아니기 때문에 카르로 한계효율(carnot efficiency limit) 이상의 고효율을 볼 수 있으며 부산물로서 수증기만을 배출할 뿐이다.[1-3] 연료전지의 종류 중 하나인 고분자 전해질 연료전지(PEMFC: Polymer Electrolyte Membrane Fuel Cell)는 고분자 전해질의 특성상 상대적으로 낮은 작동온도에서 작동하며 모든 연료전지 중에서 단위 체적당 전류밀도가 가장 높은 장점을 가지고 있어 수송용, 차량용 등 다양한 고가용 기술로 평가되고 있다.[4]

PEMFC의 에너지 변화과정의 부산물 중 하나인 물은 고분자 전해질막(Polymer Electrolyte Membrane)을 통한 이온 전도도를 유지하기 위하여 반드시 필요한 요소이며, 따라서 대부분의 경우 수소와 공기의 반응기체를 충분히 가습하여 공급한다. 그러나 높은 전류밀도의 운전조건의 경우, 혈압한 전기화학 반응에 의해 과도하게 존재하는 수분은 PEMFC를 구성하는 다양한 다공층, 즉 고분자막(PEM), 족매층(CL: catalyst layer), 미세다공층(MPL: microporous layer), 기체확산층(GDL: gas diffusion layer) 및 반응기체 유로(GC: gas channel)의 내부에서 액상으로 촉착된다. 이렇게 액상으로 촉착된 수분은 PEMFC의 다공성매질 내의 공극을 애기 전기화학적 환상화를 초래하고, 반응기체의 확산을 방해하는 등 PEMFC의 고출력 성능을 심각하게 저해한다.[5] 따라서 PEMFC내의 수분관리(water management)는 PEMFC의 성능 향상을 위해 중요한 문제로 연구되고 있다.

PEMFC의 다공층의 수분전달 현상은 전통적으로 사용되어온 기법적인 연속체 전달모델을 이용해 해석되어 왔다. 연속체 전달모델에서는 공압(capillary pressure)과 포화율(saturation)의 관계식과 포화율에 따른 상대두수율(relative
permeability)이라는 거시적 분산에서 기초하여 액상수분 전달의 지배방정식이 수립되며, 모세관압과 포화도의 관계식으로 Simulation한 Leverett J 함수가 주로 사용되어 왔다.[6-8]

서 이를 원적으로 전달화하여 다상유동의 두께함으로의 전달 현상을 관찰하였다. 특히 실험조건에서 PEMFC의 작용 결과는
아니었지만, 그들은 결과를 통해 기체확산층을 통과하는 액상
수분의 전달현상을 아이디어화한 양을 중요한 것으로 개발하였으며
또한 이를 사용한 거시적 연속체 이상유동(two-phase flow)모델의 물리적 타당성에 대해 이의를 제기하였다. 따라서 보다 미세적인 예측 모델을 통해 PEMFC의 다상유동의 수분전달 현상을 해석화하는 연구가 현재 세계적으로 활발히 진행되고 있다.[14-17]

최근에는 PEMFC 내의 수분전달 해석에 적용되고 있는 미
세적 이상유동 모델로서 다상동의 공극 구조를 네트워크로 모델할 경우 미세 전달현상을 해석하는 과공-네트워크 모델
(PNM: Pore-network Model)이 기계확산층 내의 액상수분 전달
 연구의 가장 많이 적용되고 있다.[14-17]

본 연구에서는 미세동공과 기계확산층에서의 액상수분 전달과 포화도 변화를 연구하기 위하여 공극-네트워크 모델을 이용한 수치해석을 수행하였다. 이를 위하여 기존의 과공-네트워크 모델[14-17]을 확장한 제작적 과공-네트워크 모델을 개발하여 PEMFC의 다상유조정 내에서의 두께함 액상수분 전달 현상을 연구하였다. 미세동공과 기계확산층의 연
결관계를 알아보기 위하여 scale factor(SF)를 적용하였으며, 이
들 비정량적 미세동공중의 두께 변화가 기계확산층의 수분포
화분포에 미치는 영향에 대한 수치해석을 수행하고 예측결과로
비교 분석하였다.

2. 수치해석

2.1 적응적 공극-네트워크 모델(LPNM: Layend PNMI)

공극-네트워크 모델은 다상동 매체 내에서의 다양한 물질
이동 현상에 대한 연구에 사용되어진 중요한 수치해석 방법
이다. 공극-네트워크 모델에서의 다상동 매체에서의 과공
구조는 보고서와 분석공과 동호의 실험으로 나타난다. 실제
다상동 매체 내부의 복잡한 과공좌상과 연결 관계만 단순화 하였음에도 불구하고 공극-네트워크 모델에서 공극
구조는 중요한 특성은 공극-네트워크를 구성하는 기하 구조
의 복잡성의 선택에 의해 그 연결 관계 및 주요 형상관계
을 보존할 수 있다. 그 결과 공극-네트워크 모델은 다상동 매
체 내에서 액상수분의 전달 현상에 대한 모세관 압력 또는
액상수분포화 함수로서의 상대적인 관계를 결정하거나 액상수분포화 분포를 예측하기 위한 이론적 연구에서 이용되어
왔다.[14-17]

적응적 공극-네트워크 모델은 공극-네트워크 모델의 이런
특성을 이용하여 미세동공중과 기계확산층이 적응된 다상동
매체 내에서의 물질이동 현상을 관찰하기 위한 이론적 연구
모델로 개발되었다. 실제 미세동공중 및 기계확산층의 구조
변수들을 수치적으로 모사하여 공극 구조를 형성하였으며, 이
를 위하여 각 단위 셀(scell)은 섬의 중심에 무작위 점으로 형
성되는 공극(pore)이 위치하고 있으며, 이렇게 형성된 공극과
공극은 무작위로 크기와 형상이 있는 동료(throat)들로 연결된다.

2.1.1 공극-네트워크 형성

Fig. 1은 무작위로 형성된 미세동공중과 기계확산층의 연
결 관계를 입으로 구성하는 공극과 동로를 보여주고 있으며,
 이를 구성하기 위한 적응적 공극-네트워크의 형성 매개변수는
Table. 1에 정리하였다.

적응적 공극-네트워크는 Table. 1에 요약된 형성 매개변수
를 기반으로 하여 생성된 교차 연결구조의 상자 형상의 공극
과 동로로 구성되었다. Fig. 1과 같이 한 변의 길이가 Lcell
(=25 μm)이고 σcell (=2.5, 6.25, 3.125 μm) 간의 변동성 셀
미세공극중과 기계확산층의 단면적 (N×N×N)의 장계, 수용,
L×L×L: 실제 크기에 규격적으로 구성되어 있다. 셀의
중앙에는 상자 형상의 공극이 무작위적인 길이 LMG, LMG,
LMG를 갖도록 생성되며, 각각의 사각형 셀의 중심에 위치
된다. 각각의 공극들은 무작위적으로 결정된 두 변의 길이
LMG와 LMG를 갖는 상자형상의 동로를 통해 이동되는 액
공극과 연결되며, 이렇게 공극을 연결시키는 공극들은 각각
의 사각형 셀 평면의 중심에 위치한다.

본 연구에서는 500×500×250 μm 크기의 기계확산층과
500×500×50 μm 크기의 미세동공중을 기본 크기의 제한영역
으로 고려하였다. 미세동공중을 구성하는 공극 차수의
범위는 0.6Lcell ≤ Lcell ≤ lcell (x,y) ≤ 0.7Lcell 이며, 동로 차수의 범위
는 0.1Lcell ≤ lcell (x,y) ≤ 0.6Lcell 이다.

기계확산층은 0.7Lcell ≤ lcell (x,y) ≤ 0.9Lcell의 차수 범위를 갖는
공극과 0.3Lcell ≤ lcell (x,y) ≤ 0.7Lcell의 차수 범위를 갖는
동로로 네트워크를 형성시켰다.

2.1.2 경계 조건 및 초기 조건

Fig.2에 공극-네트워크 개체에 필요한 경계조건에 대하여
설명하였다. 입구와 출구경계는 각각 공극-네트워크의 이중
면(축축과 미세동공중의 기계변)과 편면(기계확산층과 반응
기체 유도의 경계면에 위치한다. 액상 수분은 균일 유속 (uniform flux)조건으로 연구결과를 통해 공극-네트워크로 유입한다고 가정하였다. 입구경계에서 주입된 액상수분의 머피유
량(\(q_{in}\))은 전류밀도 2 A/cm²와 동일하게 주어졌다. 투입에
서는 일정 투입처로서(Injection ratio)에 따라 무작위로 동로
를 선정하여 각각의 동로를 통하여 균일 유속의 액상수분을
주입하였다. 출구경계에는 대기압 조건이 주어졌다. 공극-네트
워크의 x, y방향으로 괄산역을 무차원화 할 수 있도록 일
변으로 주입경계조건을 적용하여 주기적인 공극 연결 경계를
설정하였다.미세공극과 기체확산층의 경계에는 MPL/GDL
경계 연결조건이 적용되었다. 미세공극과 기체확산층의
경계면에서는 기체확산층의 직경으로 연결된 동로를 가지
고 있는 미세공극층만이 기체확산층으로의 물질전달 현상을
관여한다고 가정하였다. 이 연결 경계를 토대로 미세공극층을
통과하여 기체확산층으로 이동하는 액상수분의 이동현상을
수치실험하하여 예측할 수 있게 되었다.

Table 1: Parameters for pore-network model at SF=8

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{GDL} \times N_{GDL} \times N_{GDL})</td>
<td>GDL cell number</td>
<td>(20 \times 20 \times 10)</td>
</tr>
<tr>
<td>(L_{GDL} \times L_{GDL} \times L_{GDL})</td>
<td>GDL size of gas diffusion layer</td>
<td>(500 \times 500 \times 250) μm</td>
</tr>
<tr>
<td>(N_{MPL} \times N_{MPL} \times N_{MPL})</td>
<td>MPL cell number</td>
<td>(160 \times 160 \times 16)</td>
</tr>
<tr>
<td>(L_{MPL} \times L_{MPL} \times L_{MPL})</td>
<td>MPL size of gas diffusion layer</td>
<td>(500 \times 500 \times 50) μm</td>
</tr>
<tr>
<td>(L_{cell})</td>
<td>Unit cell size of GDL</td>
<td>25 μm</td>
</tr>
<tr>
<td>(d_{GDL}, d_{GDL}, d_{GDL})</td>
<td>GDL throat dimension</td>
<td>17.5 ± 22.5 μm</td>
</tr>
<tr>
<td>(d_{MPL}, d_{MPL}, d_{MPL})</td>
<td>MPL throat dimension</td>
<td>7.5 ± 17.5 μm</td>
</tr>
<tr>
<td>(L_{GDL}, L_{MPL})</td>
<td>GDL/MPL interface connection</td>
<td>3-125 μm</td>
</tr>
<tr>
<td>(d_{MPL}, d_{MPL}, d_{MPL})</td>
<td>MPL pore dimension</td>
<td>1.875 ± 2.18 μm</td>
</tr>
<tr>
<td>(d_{MPL}, d_{MPL}, d_{MPL})</td>
<td>MPL throat dimension</td>
<td>0.313 ± 1.875 μm</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Surface tension of water</td>
<td>0.0645 N/m at 70 °C</td>
</tr>
<tr>
<td>(\rho_{w})</td>
<td>Density of water</td>
<td>978 kg/m³ at 70 °C</td>
</tr>
<tr>
<td>(\theta_{w})</td>
<td>Contact angle of water</td>
<td>120°</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Inject flux of water</td>
<td>2 A/cm²</td>
</tr>
<tr>
<td>(\eta_{w})</td>
<td>Viscosity of water</td>
<td>40.38 × 10⁻⁵ Pa·s at 70 °C</td>
</tr>
</tbody>
</table>

Fig. 2: Pore-network boundary condition

2.2 수분전달 모델

공극-네트워크 모델의 수분전달 모델은 공극에서의 모세관
압력에 주요 변수로 하여 동로에서의 모세관 입구 압력에 진
달도수로 하여 계산한다. 최 단계는 공극-네트워크를 통해 출
구로 배출되는 액상수분의 이동 경로를 구하기 위한 액상
수분이 침투된 공극들과 동로들의 침투구체(percolated clusters)
을 결정하는 것이다. 이 후 침투구체를 이용하여 이주하는
상상상태의 액상 수분을 주어진 액상수분 유량을 조건으로
하여 각 공극의 모세관 압력을 평가 계산한다. 마지막으로 공
극-네트워크의 액상수분 보조를 분포를 침투된 공극과 동로들
에서의 액상수분의 투입을 더하여 계산한다.

2.2.1 투과-상투 경로 찾기(invasion-percolation path finding)

액상수분의 이동 경로 찾기 과정은 소수성의 다층성 유체
의 액상수분 투과-상투 전달(invasion-percolation transport)을 참
고하였다. 투과-상투 전달 방식에 따르면, 액상수분은 가장 작
은 모세관 입구 압력을 가지는 동로를 무차원적으로 선별하여
침투하게 된다. 이를 결정하는 모세관 입구 압력은 다음과 같이
정의된다.

\[
p_t = \frac{2\sigma|\cos\theta_w|}{r_t}
\]
수면변경은 직사각형 통로를 통해하는 물/공기 경계면의 평균활성산염의 계산에 사용되었다.

초기 공극-네트워크 내의 이산 공극들과 통로들이 첨투되었다면, 첨투된 공극들과 연결되어 있지만 아직 첨투되지 않은 통로들은 목록으로 만들어진다. 이 목록을 통해 첨투 측정이 정의되며 액상수분의 다른 첨투 또는 이동에 이용될 수 있는 모든 통로들을 포함한다. 따라서 최소의 모세관 입구 압력은

![Fig. 3 Saturation distribution of GDM at (a) scale factor = 2, (b) scale factor = 4 (c) scale factor = 8](image)

突破流れ의

水壩/Channel

Air

MPL/GDL interface

Water

CL/MPL interface

Fig. 4 Approximated saturation distribution at S=0.5, SF=8
MPL thickness is 25 μm

동로 첨투 목록에서 찾아낸다. 다음으로 최소 모세관 입구 압력에 해당하는 통로와 통로에 연결된 공극은 다음 과정을 위하여 첨투된 목록에 저장한다. 위의 과정 착기 과정은 출구 경계로 이르는 통로와 첨투될 위치의 반복된다. 입구 경계에서 정해진 입구침투비율에 맞추어 입구의 길임 유량을 통로가 무작위로 선택되며, 각각의 입구 통로에 대해 투입-상투 경로를 찾은 후에 생성된 모든 경로를 병합하여 최종 액상수분 이동 경로를 확립한다.

2.2.2 수분포화율 결정

공극-네트워크에서 액상수분 포화율 분포를 얻기 위해서는 공극과 통로에서 액상수분 부피를 합하여 한다. 이를 위해 각 섹션의 내부에 존재하는 액상수분의 부피가 우선 결정되어야 한다. 상자형태 섹션에서의 액상수분 부피는 다음과 같이 계산되며,

$$W_{c,j} = W_{p,i} + \sum_{j}^{n} \frac{1}{2} W_{L,ij}$$

$W_{p,i}$는 공극 i의 액상수분 부피이고, $W_{L,ij}$는 공극 i와 j를 연결하는 통로에서의 액상 부피이다. 공극 또는 통로가 액상 수분에 의해 첨투될 경우, 공극과 통로 내에서의 액상수분 부피를 결정하기 위한 단순한 방법은 $W_{p,i} = V_{p,i}$ 또는 $W_{L,ij} = V_{L,ij}$로 설정하는 것이다.

본 연구에서는 공극-네트워크 형성구조에 적합한 방식으로
\[W_{ij} \]와 \(W_{ij} \)을 결정하였다. 투입된 동로에서의 액상수분 부피는 다음과 같이 계산된다.

\[W_{ij} = A_{w_{ij}} \times I_{ij} \]

(3)

\(A_{w_{ij}} \)는 동로에서 이상유동 계산과정에서 결정되는 액상수 분의 유동면적이다.

상자체계 생 \(i \)에서의 액상수분 부피는 각 순열로(layer-by-layer) 함께였고 광호하는 중에서 총 공간으로 나누어서 각 중에서의 액상수분 포화율을 결정하였다.

3. 결과 및 도의

3.1 SF(scale factor)에 따른 기준 형성에 대한 연구

본 연구에서는 다공성층 내부의 물질이동 형성 및 액상수 분의 포화율에 대한 연구를 진행하기 위해 기존의 공극-네트워크 모델을 확장한 액상식 공극-네트워크 모델을 이용하였다. 따라서 액상식 공극-네트워크 모델을 통해 PEMFC 내의 다공성 내에서의 현상을 예측하고 미세다공층과 기체 확산층 사이에서의 연결 관계를 명확히 정립할 필요가 있다.

미세다공층의 두께 변화가 PEMFC 내 다공성층 내 액상수 분이동 현상에 미치는 영향에 대한 연구를 앞서, 미세다공층 과 기체확산층 간의 연결 관계에 대한 연구를 진행하였다. 기체공극층의 평균 공극의 크기는 20~25 mm로 알려져 있다. 반면 평균적으로 미세다공층의 공극의 크기는 기체확산층의 평균 공극의 크기보다 훨씬 적은 0.1 mm 수준으로 길이 비율로 약 10000 배의 차이를 갖는다. 현재의 액상식 공극-네트워크에 실제의 공극크기의 비율을 적용한 다면, 액상수분의 전달을 예측하기 위해 천문학적인 데이터 처리하기가 어렵다. 따라서 합리적인 결과에 대해 정밀한 시간 내에 탐량한 경향을 평가하기 위하여 SF(scale factor)를 도입하였다. SF의 도입으로 PEMFC의 다공성층 내 물질전달 현상에 대한 정확한 수치적인 값의 예측은 힘들지만, 탐량하는 결과의 경향을 예측할 수 있을 것이다 예상된다.

\[SF = \frac{\text{unitcell size of MPL}}{\text{unitcell size of GDL}} \]

(4)

SF에 따른 액상식 공극-네트워크의 기준 형성을 결정하기 위하여 SF가 2, 4, 그리고 8일 경우에 대하여 조사하였다. Fig. 3는 SF의 변화에 따른 다공성층 내에서의 평균 액상수분의 포화율 분포를 나타낸 그래프이다. SF=2일 경우, 미세다공층의 내에서 미세다공층과 기체확산층간의 경계면에서의 평균 액상수분 포화율은 0.186의 값을 갖는다. SF=4, 그리고 8일 경우, 0.062와 0.018의 액상수분 포화율을 가지며 SF=2일 경우에 비교해 낮은 차수 작은 값을 갖는다.

미세다공층의 두께변화에 따른 다공성층 내에서의 액상수 분 전달 과정을 연구하기 위해서는 미세다공층과의 물리적 현상을 중요하다. 특히 미세다공층과 기체확산층 경계에서의 물리적 특성이 PEMFC 내 다공성층에서의 물질전달 현상에서의 중요한 요소이다. SF 값의 변화에 따른 미세다공층 내의 액상수분 포화율 분포의 경향은 SF 값이 증가함수록 미세다공층 내의 액상수분 포화율 값이 줄어드는 것으로 나타난다. SF=8일 경우가 SF=2와 4일 경우보다 미세다공층의 두께가 증가하는 영향에 대한 연구에 더 탐량한 경향을 보임 것이다 생각된다. 따라서 본 연구에서는 SF=8일 경우를 기준 형성으로 결정하였다. 이 후 진행되는 미세다공층의 두께 변화에 따른 현상을 연구에서는 기존의 형상의 SF를 기반으로 수행되었다. Fig. 4는 SF=8일 때 액상수분 포화율이 0.5일 경우에 대한 액상수분 포화율 분포의 통계율을 보여준다.

3.2 미세다공층(MPL)의 두께 변화에 따른 영향

본 연구에서는 일정한 두께의 기체확산층에 미세다공층의 두께를 확장시킴으로써 미세다공층의 두께 확장에 대한 영향을 논의한다. 이때 고려되어지는 주요 변수는 미세다공층의 두께이다. 미세다공층이 두께면면에 따라 액상수분 포화율과 기체확산층 내 액상수분 포화율에 대한 영향을 분석하였다. 기체확산층 두께를 일정하게 250 mm로 유지하였고 미세다공층의 두께를 25 μm에서 150 μm까지 25 μm 간격으로 변화시켰다.

Fig. 5는 미세다공층의 두께가 PEMFC 내 액상수분 포화율에 미치는 영향을 보여주고 있다. 기체확산층과 측면층 사이에 임설된 미세다공층은 측면층보다는 크지만 기체확산층보다 적은 공극을 가지고 있다. 때문에 측면층과 미세다공층 사이에서 chromatographic 차로 경계면에서의 액상수분의 크기는 미세다공층의 공극의 크기를 넘지 않는다. Nam et al.[18]은 측면형과 미세다공층의 경계면에서 각 공극의 크기에 따른 경계면에서의 투과능성에 대해 연구하였다. 이에 따라 본 연구에서는 측면층과 미세다공층의 경계에서 액상수분의 입구투과율을 10%로 고려하였고, 그 결과 입구투과율을 10%로 적용하였을 경우 측면형과 미세다공층의 경계면에서는 약 0.43의 평균 액상수분 포화율값을 가졌다.

미세다공층 내로 필터한 액상수분은 투과-결정 현상에 의해 작은 모세관 압력의 통로를 찾아 이동하게 된다. 미세다공층 내 액상수분은 미세다공층과 기체확산층의 경계면으로 투과-결정 현상에 의해 이동함에 따라 다른 공극에서 첨단한 액상수분을 보유한다.
상수분과 유로가 병합되긴다. 그 결과 미세다공층 내 평균 액상수분 포화율은 층매층과 미세다공층의 정계면에서 미세 다공층과 기계확산층의 정계면 방향으로 감소하는 경향을 보인다. 위와 같은 이유로 미세다공층의 두께가 두꺼워질수록 액상수분의 두께-첨단이동 현상에 따라 유로의 평균이 일어날 확률이 증가하며 미세다공층과 기계확산층의 정계면에서의 평균 액상수분 포화율이 감소함을 확인하였다.

미세다공층의 두께가 두꺼워짐에 따라 미세다공층
내 기체확산층과의 경계면에서 평균 액상수분포화율은 감소하게되며 이는 기체확산층으로 침투되는 액상수분의 첨단영적적 감소시키는 원인이 된다. 때문에 기체확산층 내 미세다공중과 경계면에서 기체확산층의 액상수분 포화율이 감소하는 경향을 보인다. 미세다공중의 두께가 증가함에 따라 기체확산층 내 액상수분 포화율은 감소하는 것으로 나타나 그 경향성은 밝혀지는 것을 알 수 있다. Fig. 5(a)에서 보여주는 바와 같이 미세다공중의 두께가 충분히 얇은 경우 기체확산층 내 평균 액상수분 포화율은 미세다공중층과 기체확산층의 경계면에서 급격히 낮아지면서 오목하게 감소하는 경향을 보인다. 그러나 미세다공중의 두께가 증가함에 따라 미세다공중과 기체확산층의 경계면에서 줄어드는 액상수분 포화율의 기울기가 감소하며, 미세다공중의 두께가 충분히 두꺼워지면 그 기울기가 역전되는 현상을 보인다.

기체확산층 내 미세다공중과 기체확산층 경계면에서의 액상수분 포화율의 역전현상은 Fig. 5(a)와 (b)에서 볼 수 있다. 이러한 현상은 미세다공중으로부터 충분히 작은 양의 첨단영적적 감소한다. 이 결과로 미세다공상층의 두께변화와 기체확산층의 액상수분 포화율과 적절적으로 관련되어 있음을 알 수 있다. 하지만 미세다공중의 두께 변화는 기체확산층과 반응기체 유로 경계면에서의 액상수분 포화율에 영향을 미치지 않았다. Fig. 6는 액상수분 포화율에 0.5일 경우에 대한 액상수분 포화 분포의 증가분을 보여준다. Fig. 6 (a)와 (b)부터 미세다공중의 두께가 적당히 크고 기체확산층에서 내 액상수분 포화율이 감소하고 그에 따라 기체확산층으로부터 반응기체 유로의 침투유로의 수가 감소함을 보일 수 있다.

4. 결론

본 논문은 기체확산층에서 일정한 두께의 기체확산층의 전체에 미세다공중의 두께에 변화를 주었을 때의 영향을 논의하였다. 해석 결과 미세다공중의 두께가 적당히 크고 기체확산층 경계면에서 액상수분 포화율이 감소하는 경향을 보일 수 있었다. 감소된 미세다공중 내 기체확산층과 경계면에서의 액상수분 포화율은 기체확산층 입구로 침투되는 첨단영적적 감소시키는 원인이 되었다. 결과적으로 기체확산층 내 미세다공중과 경계면에서의 액상수분 포화율이 감소함을 보였다. 또한 미세다공중의 두께가 증가함에 따라 미세다공중과 기체확산층의 경계면에서 액상수분 포화율의 기울기가
감소하며, 미세다공층의 두께가 충분히 두꺼워 지게 되면 그 기울기가 역전하는 현상을 보임을 알 수 있었다.
미세다공층의 두께 증가에 따른 다공상층 내 핵산수분 보화율과 붙괴의 감소는 다공상층 내 침투된 공극을 줄여 반응기계의 확산에 유리하게 작용하지만 반응기계의 확산거리가 증가함에 따라 시양으로도 작용한다.
따라서 다공상층 내에 핵산수분 보화율의 분포만으로 연료전지의 성능을 평가하기에는 무리가 있다. 그러므로 미세다공층의 두께 변화에 따른 연료전지 성능을 평가하기 위해서는 농도차이에 의한 기체확산 및 확산속도에 관한 연구가 차후 이루어져야 할 것이다.

후 기
이 논문은 2010년도 2대계 두뇌한국21사업에 의한 지원과 2010년도 장애교육과학기술부의 지원으로 한국연구재단의 지원을 받아 수행된 연구(No.2010-0012613)로 이루어졌으며, 이에 감사드립니다.

참고문헌

