• 제목/요약/키워드: Host lethal gene

검색결과 13건 처리시간 0.017초

The Mutation that Makes Escherichia coli Resistant to λ P Gene-mediated Host Lethality Is Located within the DNA Initiator Gene dnaA of the Bacterium

  • Datta, Indrani;Banik-Maiti, Sarbani;Adhikari, Lopa;Sau, Subrata;Das, Niranjan;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.89-96
    • /
    • 2005
  • Earlier, we reported that the bacteriophage $\lambda$ P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this $\lambda$ P gene-mediated lethality. In this paper, we show that under the $\lambda$ P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94% linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from $\lambda$ P gene-mediated killing and complements E. coli dnaAts46 at $42^{\circ}C$. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to $\lambda$ P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.

Multicopy Streptomyces 플라스미드 pJY711의 재조합 유도체의 특성 (Characterization of Recombinant Derivatives of pJY711 of Multicopy Streptomyces Plasmid)

  • 염도영;공인수;유주현
    • 미생물학회지
    • /
    • 제28권1호
    • /
    • pp.35-40
    • /
    • 1990
  • Thiostrepton 내성 유전자(tsr)를 포함하는 multi-copy 재조합 플라스미드 pJY7J2의 제한효소 절단지도를 작성하였다. pJY, 712는 Streptomyces에서 넓은 host range를 나타내었으며 cloning 목적에 사용할 수 있는 단일 BgtIl 제한효소 인식부위를 갖고 있었다. 플라스미드 pJY 712는 lethal zygosis(Ltz+) 현상을 보였다. pJY 712의 혁질전환빈도는 S. lividans에서 $5.0\times 10^{4}$ TFU였다. pJY 712의 Bell 제한효소 인식부위에 tyrosmase 유전자(mel)를 삽입하여 플라스미드 PJY713을 제조하였다. met 유전자를 포함한 재조합 플라스미드 pJY 714는 pJY 713의 일부분(1.9kb BgllI-BelI 단편)을 제거하여 제고하였다.

  • PDF

Overexpression of a delayed early gene hlg1 of temperate mycobacteriophage L1 is lethal to both M. smegmatis and E. coli

  • Chattoraj, Partho;Ganguly, Tridib;Nandy, Ranjan Kumar;Sau, Subrata
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.363-368
    • /
    • 2008
  • Two genes of temperate mycobacteriophage L5, namely, gp63 and gp64, were hypothesized to be toxic to M. smegmatis. An identical L5 gp64 ortholog (designated hlg1) was cloned from homoimmune mycobacteriophage L1 and characterized at length here. As expected, hlg1 affected the growth of M. smegmatis when overexpressed from a resident plasmid. HLG1 (the protein encoded by hlg1) in fact caused growth retardation of M. smegmatis and the region encompassing its 57-114 C-terminal amino acid residues was found indispensable for its growthretardation activity. Both nucleic acid and protein biosynthesis were severely impaired in M. smegmatis expressing HLG1. Interestingly, HLG1 also affected E. coli almost similarly. This putative delayed early lipoprotein did not participate in the lytic growth of L1.

알킬화제 시약에 대해 민감한 E. coli 변종들과 그들의 상보적인 유전자에 대한 연구 (E. coli Mutants sensitive to Alkylating agents and their Complementary Gene)

  • 정선호;한범희;양철학
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.57-66
    • /
    • 1987
  • E. coli의 한 변종안 LeB 850 strain을 MNNG되 저해하여 MMS에 대해 증가된 빈감성을 갖는 변종들 분리하다. 이 들에 대해 효소 황동도, 간단한 알켈화제 시약에 대한 띤감성을 조사하고, bacteriophage을 이용한 숙주세포 재활성도 능력 평가 알칼화제 실시하여 이 들을 확정지었다. E. coli의 변종인 5-62뉴 3-methyladenine DNA glycosylase II의 효소 활능도가 전혀 없었으며, 알킬화제 시약인 M:ING와 1\1MS에 대한 매우 증가된 민감성을 보였다. 또한 이 변종 5-62는 MMS가 처리된 phage charon 35-을 숙주내에 셔 새황성화 시키는 능력이 현저히 부족하였다. 변종 5-62에서 MMS에 대해 증가 된 저항성을 주는 MMS+ gene을 cloning 하였다. 재조합 plasmid인 pMRG 1은 변종 5-62에서 MMS에 대한 민감도달 감소시켰으나 MMS에 대한 민감도는 변화 시키시 몫했다. 이 plasmid를 포착한 변종 5-62는 0.5$\mu$g/ml의 MNNG를 $37^{\circ}C$에서 2 시간 처리 하였을때 MMS의 저항성을 보다 촉진시켰다. 재조합 plasmid인 pMRG 1이 alk A 변이와 ada 변이를 회복시키지 못했으나, MMS가 처리된 파지를 재활성화 시키는 능력은 이 plasmid가 없는 변종보다 증가시컸다.

  • PDF

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

Molecular Cloning and Expression of a Sodium-Driven Flagellar Motor Component Gene(motX) from Vibrio fluvialis

  • Park, Je-Hyeon;Lee, Jong-Hee;Kim, Young-Sook;Hong, Yong-Ki;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.973-978
    • /
    • 2001
  • The bacterial flagellar motor is a molecular machine that couples proton or sodium influx to force generation, mostly for driving rotation of the helical flagellar filament. In this study, we cloned a gene (motX) encoding a component of the sodium-driven flagellar motor from Vibrio fluvialis. The nucleotide sequence of the motX gene, composed of 633 bp and 211 amino acid residues, was determined. Overexpression of the motX gene in Escherichia coli using a strong promoter induced growth inhibition and cell lysis. The lethal effect of E. coli was suppressed by adding amiloride, as a potent inhibitor for the sodium channel. Electron microscopic observation of the expressed protein indicated that MotX protein induced by isopropyl ${\beta}$-D-thiogalactopyranoside caused the lysis of host cell.

  • PDF

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

약독화 Salmonella typhimurium 생백신 균주에서 Bordetella pertussis 의 filamentous hemagglutinin(F HA) (Expression of recombinant Bordetella pertussis filamentous hemagglutinin (FHA) antigen in Live Attenuated Salmonella typhimurium Vaccine Strain)

  • 강호영
    • 생명과학회지
    • /
    • 제11권4호
    • /
    • pp.385-391
    • /
    • 2001
  • Filamentous hemagglutinin (FHA) is considered as an essential immunogenic component for incorporation into acellular vaccines against Bordetella pertussis, the causative agent of whooping cough. Classically, antipertussis vaccination has employed an intramuscular route. An alternative approach to stimulate mucosal and systemic immune responses is oral immunization with recombinant live vaccine carrier strains of Salmonella typhimurium. An attenuated live Salmonella vaccine sgrain($\Delta$cya $\Delta$crp) expressing recombinant FHA(rFHA) was developed. Stable expressionof rFHA was achieved by the use of balanced-lethal vector-host system. which employs an asd deletion in the host chromosome to impose in obligate requirement for diaminopimelic acid. The chromosomal $\Delta$asd mutation was complemented by a plasmid vector possessing the asd$^{+}$ gene. A 3 kb DNA fragment encoding immuno dominant regionof FHA was subcloned in-frame downstream to the ATG translation initiation codon in the multicopy Asd$^{+}$ pYA3341 vector to create pYA3457. Salmonella vaccine harboring pYA3457 expressed approximately 105kDa rFHA protein. The 100% maintenance of [YA3457 in vaccine strain was confirmed by stability examinations. Additionally, a recombinant plasmid pYA3458 was constructed to overpress His(8X)-tagged rFHA in Essherichia coli. His-tagged rFHA was purified from the E. coli strain harboring pYA3458 using Ni$^{2+}$-NTA affinity purification system.>$^{2+}$-NTA affinity purification system.

  • PDF

Dose-Dependent Inhibition of Melanoma Differentiation-Associated Gene 5-Mediated Activation of Type I Interferon Responses by Methyltransferase of Hepatitis E Virus

  • Myoung, Jinjong;Min, Kang Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1137-1143
    • /
    • 2019
  • Hepatitis E virus (HEV) accounts for 20 million infections in humans worldwide. In most cases, the infections are self-limiting while HEV genotype 1 infection cases may lead to lethal infections in pregnant women (~ 20% fatality). The lack of small animal models has hampered detailed analysis of virus-host interactions and HEV-induced pathology. Here, by employing a recently developed culture-adapted HEV, we demonstrated that methyltransferase, a non-structural protein, strongly inhibits melanoma differentiation-associated gene 5 (MDA5)-mediated activation of type I interferon responses. Compared to uninfected controls, HEV-infected cells display significantly lower levels of $IFN-{\beta}$ promoter activation when assessed by luciferase assay and RT-PCR. HEV genome-wide screening showed that HEV-encoded methyltransferase (MeT) strongly inhibits MDA5-mediated transcriptional activation of $IFN-{\beta}$ and $NF-{\kappa}B$ in a dose-responsive manner whether or not it is expressed in the presence/absence of a tag fused to it. Taken together, current studies clearly demonstrated that HEV MeT is a novel antagonist of MDA5-mediated induction of $IFN-{\beta}$ signaling.

대장균에서 Bacillus subtilis glutamyl-tRNA synthetase의 과발현 및 정제 (Overexpression and Purification of Bacillus subtilis Glutamyl-tRNA Synthetase in Escherichia coli)

  • 오종신;윤장호;홍광원
    • Applied Biological Chemistry
    • /
    • 제45권4호
    • /
    • pp.190-194
    • /
    • 2002
  • Bacillus subtilis의 glutamyl-tRNA synthetase(GluRS)는 대장균에서 발현될 때 숙주세포의 $tRNA_1^{Gln}$에 glutamate를 잘못 아실화하여 독성을 나타내는 것으로 추정되고 있다. 이러한 B. subtilis GluRS를 대장균에서 과발현 시키기 위하여 B. subtilis 168 균주의 chromosomal DNA에서 GluRS의 유전자(gltX)를 PCR을 이용하여 증폭하고 T7 promoter에 의해 발현이 조절되는 pET11a expression vector에 클로닝하였다. 이 재조합된 pEBER plasmid DNA로 T7 RNA polymerase를 갖는 대장균 NovaBlue(DE3)에 형질전환하였다. 형질전환된 대장균에 IPTG를 처리하여 과량 생성된 GluRS 단백질은 ammonium sulfate 분별침전 후 EPLC를 이용한 Source Q column anion exchange chromatography, Superdex 200 column gel filtration, Mono Q column anion exchange chromatography로 정제하였다. 정제된 B. subtilis의 GluRS 분자량은 약 55 kDa이었으며 효소의 활성도는 조효소액에 비해 18배로 증가하였다.