• 제목/요약/키워드: Host Molecule

검색결과 99건 처리시간 0.146초

Anti-tumor and immuno-stimulating activity of fungal polysaccharides

  • Lee, Jae-Hoon
    • 미생물과산업
    • /
    • 제20권3호
    • /
    • pp.14-21
    • /
    • 1994
  • Low molecular weight molecules and high molecular weight substances were found to have anti-tumor and immuno-modulating activity. Previously polysaccharides have been received much attention because of adhesives, food additives or animal foods (Whistler et al., 1976). In effort of developing new anti-tumor substances with low toxicity, numerous polysaccharides from yeast, algae, bacteria, higher plants and especially fungi have been investigated for anti-tumor and immuno-modulating activities. Thus the high molecular weight molecule was reported to have anti-tumor activity through host mediated immunity. In this brief article, attention will be paid to polysaccharides which is especially fungal origin.

  • PDF

GDI Host-Dopant를 이용한 청색 유기발광다이오드의 제작 (Fabrication of Blue OLED with GDI Host and Dopant)

  • 장지근;신세진;강의정;김희원;서동균;임용규;장호정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.773-776
    • /
    • 2005
  • In the fabrication of high performance Blue organic light emitting diode, 2-TNATA[4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as hole injection material and NPB[N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as hole transport material were deposited on the ITO (Indium Tin Oxide)/Glass substrate by vacuum evaporation. And then, Blue color emission layer was deposited using GDI602 as a host material and GDI691 as a dopant. Finally, small molecule OLED with the structure of ITO/2-TNATA/NPB/GDI602+GDI691/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode, respectively. Blue OLED fabricated in our experiments showed the color coordinate of CIE(0.14, 0.16) and the maximum luminescence efficiency of 1.06 lm/W at 11 V with the peak emission wavelength of 464 nm.

  • PDF

Fluorescent Blue Materials for Efficient Organic Light-Emitting Diode with High Color Purity

  • Choi, Kyung-Sun;Lee, Chan-Hyo;Lee, Kwan-Hee;Park, Su-Jin;Son, Seung-Uk;Chung, Young-Keun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1549-1552
    • /
    • 2006
  • We report a new series of blue dopants composed of both electron donating and electron accepting moieties in one molecule, based on nalidixic acid. The EL device derived from the dopant exhibits pure blue light emission (0.15, 0.14) The current efficiency is estimated to be 3.88 cd/A at 100 $cd/m^2$, which shows remarkable enhancement, compared to that of the host itself (2.5 cd/A at 100 $cd/m^2$) under the same conditions. These results demonstrate that the incorporation of a proper guest into the host in a guest-host doped system improves not only the purity of the fluorescent blue emission but also elevates its quantum efficiency, thus improving the OLED performance.

Three-Dimensional Metal Complex Host with Alternating Arrangement of the Occupied and Vacant Channels. The Crystal Structure of Cd(NH₂CH(CH₃)CH₂NH₂)Ni(CN)₄· 0.25G (G=$CH_3C_6H_5, p-(CH_3)_2C_6H_4$)

  • 박기민;이욱;Toschitake Iwamoto
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권10호
    • /
    • pp.919-924
    • /
    • 1996
  • Crystal structure of two inclusion compounds Cd(pn)Ni(CN)4·0.25G (G=toluene and p-xylene, pn=1,2-diaminopropane) have been determined from single-crystal X-ray diffraction data; toluene clathrate: monoclinic P21/n, a=13.838(6), b=26.893(5), c= 7.543(5) Å, γ=90.92(3)°, Z=4, R=0.0616; p-xylene clathrate: monoclinic P21/n, a=13.895(2), b=26.900(3), c=7.613(1) Å, γ=91.06(1)°, Z=4, R=0.0486. The host structures determined for toluene- and pxylene-guest clathrates are substantially identical to the U-type structures observed for the straight chain aliphatic-guest clathrates. However, the alternating arrangement of occupied channels with the guest molecules and vacant channels appears in the host structure. The non-centrosymmetric toluene molecules are distributed about the inversion center to give an image like p-xylene molecule. The guests, toluene and p-xylene, prefer the U-type channel, favoring the interaction between the π-electrons of the aromatic ring and the pn-amino groups to hold the aromatic ring vertical to the cyanometallate meshes.

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

가스 하이드레이트 형성 원리를 이용한 철강공정 배기가스 중 CO2 분리기술에 대한 최근 연구 동향 (Recent Research Trends on Separation of CO2 Emitted From Steelmaking Process using Gas Hydrate Technology)

  • 이보람;류준형;한건우;박다혜;이건홍;이인범
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.232-243
    • /
    • 2010
  • 가스 하이드레이트는 고압과 저온 조건에서 객체분자(guest molecule)인 저 분자량의 가스와 주체분자(host molecule)인 물 분자가 결합하여 고체상으로 형성된 화합물을 일컫는다. 물과 가스에 의해서 형성이 된다는 점, 포집 가스의 종류에 따라 다양한 결정구조가 형성되며 선택적으로 가스를 포획할 수 있는 장점으로 인하여 이를 지구온난화 가스 저감을 위한 산업공정에 활용하는 연구가 최근 활발히 진행되고 있다. 본 논문에서는 $CO_2$ 또는 $CO_2-N_2$ 하이드레이트에 관한 전반적인 최근 연구 동향을 파악하여 이를 실제 산업 현장에 적용하는 경우에 대한 기술적 가능성을 모색해 본다. 특히 대규모 $CO_2$가 배출되면서도 이에 해당하는 연구가 활발히 진행되지 않았던 제철 공정에 대한 적용성을 중점적으로 검토하였다.

3차원 금속 착제를 Host로 하는 포접 화합물 [$Cd(pn)Ni(CN)_4{\cdot}0.5(CH_3COCH_3{\cdot}H_2O$)의 결정구조 (Crystal Structure of the Three-dimensional Metal Complex Host in Clusion Compound [$Cd(pn)Ni(CN)_4{\cdot}0.5(CH_3COCH_3{\cdot}H_2O$))

  • 박기민;이욱;암본진무
    • 대한화학회지
    • /
    • 제38권6호
    • /
    • pp.435-441
    • /
    • 1994
  • 3차원 금속 착제, Cd(pn)Ni(CN)4를 host로 하는 포접 화합물을 합성하고, X-선 회절 데이타를 이용한 단결정의 구조해석을 하였다. 결정학적 데이타는 다음과 같다. $[Cd(pn)Ni(CN)_4]{\cdot}0.5(CH_3COCH_3{\cdot}H_2O)$, Fw = 387.35, Orthorhombic, $Pn2_1a$, a = 13.950(3) $\AA$, b = 26.713(7) $\AA$, c = 7.628(1) $\AA$, V = 2843(1) $\AA^3$, Z = 4, $D_x=1.81 gcm^{-3}$, $\mu(MoK{\alpha})$ = $28.153cm^{-1}$, T = 297K, 3521개($F_0>3{\sigma}(F_0)$)의 회절 강도에 대한 최종 신뢰도 인자 R = 0.0418이 얻어졌다. 이 포접 화합물은 thiourea 포접 화합물과 유사한 턴넬형의 포접 공간(T-type)을 형성하며, 이런 포접공간 내에 분자당 0.5개의 아세톤과 물분자를 guest로서 받아 들인다. 표제의 포접 화합물은 이미 보고된 바와 같이, 가지달린 유기 guest분자가 host의 기하구조를 T-type으로 이끈다고 하는 host 선택성에 대한 또 하나의 증거가 된다.

  • PDF

TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가 (Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant)

  • 장지근;안종명;신상배;장호정;공수철;신현관;공명선;이칠원
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF

[ ${\beta}-cyclodextrin$ ] inclusion properties with guest molecules using hetero-bi-functional reactive dye

  • Kim, Byung-Soon;Kim, Young-Sung;Son, Young-A
    • 한국염색가공학회지
    • /
    • 제19권2호
    • /
    • pp.32-35
    • /
    • 2007
  • Cyclodextrin is a cyclic oligosaccharid material which shows an ability to incorporate organic guest molecules inside their cavity area. Thus, this ${\beta}-cyclodextrin$ treatment on fiber substrates may provide the changed surface characteristics of the substrates such as solubility, chemical reactivity and spectral property. In this context, the aim of this present work is to make a bridge connection using hetero-bi-functional reactive dye between fiber substrates and ${\beta}-cyclodextrin$. In addition, the corresponding Berberine inclusion behaviors into the inner cavity of ${\beta}-cyclodextrin$ was examined. The %exhaustion of Berberine inclusion as a guest molecule within the ${\beta}-cyclodextrin$ was measured using UV-Vis spectrophotometer. The findings showed that the %exhaustion of Berberine inclusion increased with increasing the prepared dye bridge compound and ${\beta}-cyclodextrin$ host material.