DOI QR코드

DOI QR Code

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz (Department of Physics, College of Science, University of Bahrain) ;
  • Jaafar, Adnan (Department of Physics, College of Science, University of Bahrain)
  • Received : 2019.08.29
  • Accepted : 2019.10.02
  • Published : 2020.01.27

Abstract

Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

Keywords

References

  1. B. G. Lewis and D. C. Paine, Mater. Res. Soc. Bull., 25, 22 (2000).
  2. M. Yan, M. Lane, C. R. Kannewarf and R. P. H. Changa, Appl. Phys. Lett., 78, 2342 (2001). https://doi.org/10.1063/1.1365410
  3. Powder Diffraction File, Joint Committee for Powder Diffraction Studies (JCPDS) file No. 05-0640.
  4. Z. Zhao, D. L. Morel and C. S. Ferekides, Thin Solid Films, 413, 203 (2002). https://doi.org/10.1016/S0040-6090(02)00344-9
  5. P. K. Gupta, K. Ghosh, R. Patel, S. R. Mishra and P. K. Kahol, Curr. Appl. Phys., 9, 673 (2009). https://doi.org/10.1016/j.cap.2008.06.004
  6. A. A. Dakhel, Adv. OptoElectron., 2013, 6 (2013). https://doi.org/10.1155/2013/804646
  7. A. A. Dakhel, Thin Solid Films, 41, 2405 (2012).
  8. K. M. A. Hussain, Z. H. Mahmood, I. M. Syed, T. Begum, T. Faruqe1 and J. Parvin, Am. J. Mater. Sci. Application, 2, 91 (2014).
  9. F. V. Wald, Revue de Physique Appliquee, 12, 277 (1977). https://doi.org/10.1051/rphysap:01977001202027700
  10. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  11. S. Sonmezoglu, T. A. Termeli, S. Akin and I. Askeroglu, J. Sol-Gel Sci. Technol., 67, 97 (2013). https://doi.org/10.1007/s10971-013-3054-1
  12. A. A. Dakhel, Sol. Energy, 84, 1433 (2010). https://doi.org/10.1016/j.solener.2010.05.003
  13. F. Jamali-Sheini, R. Yousefi, M. R. Mahmoudian, N. A. Bakr, A. Saaedi and N. M. Hyang, Ceram. Int., 40, 7737 (2014). https://doi.org/10.1016/j.ceramint.2013.12.115
  14. S. Sonmezoglu and E. Akman, Appl. Surf. Sci., 318, 319 (2014). https://doi.org/10.1016/j.apsusc.2014.06.187
  15. T. Minami, Thin Solid Films, 516, 1314 (2008). https://doi.org/10.1016/j.tsf.2007.03.082
  16. T. Ratcheva, M. Nanova, L. Kinova and I. Penev, Thin Solid Films, 202, 243 (1991). https://doi.org/10.1016/0040-6090(91)90095-F
  17. B. Georgieva, I. Podolesheva, G. Spasov and J. Pirov, Sensors (Basel), 14, 8950 (2014). https://doi.org/10.3390/s140508950
  18. J. M. Jaklevic and F. S. Goulding, Energy Dispersion in X-ray Spectrometry, p.50, ed. H. K. Herglotz and L. S.Birks, NY: M. Dekker (1978).
  19. A. A. Dakhel and H. Hamad, Int. J. Thin Films Sci. Technol., 1, 25 (2012).
  20. A. A. Dakhel, Chem. Phys., 130, 398 (2011).
  21. A. A. Dakhel, J. Mater. Sci.: Mater. Electron., 29, 3584 (2018). https://doi.org/10.1007/s10854-017-8288-1
  22. L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer and P. Scardi, J. Appl. Cryst., 32, 36 (1999). https://doi.org/10.1107/S0021889898009856
  23. A. Khorsand Zak, W. H. Abd Majid, M. E. Abrishami and R. Yousefi, Solid State Sci., 13, 251 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024
  24. J. Tauc and F. Abelesn ed., Optical Properties of Solids, North Holland (1969).
  25. J. I. Pankove, Optical processes in semiconductors, p. 36, NY: Dover (1975).
  26. Y. Z. Zhang, J. G. Lu, Z. Z. Ye, H. P. He, L. P. Zhu, B. H. Zhao and L. Wang, Appl. Surf. Sci., 254, 1993 (2008). https://doi.org/10.1016/j.apsusc.2007.08.008
  27. Y. Dou, R. G. Egdell, T. Walker, D. S. L. Law and G. Beamson, Surf. Sci., 398, 241 (1998). https://doi.org/10.1016/S0039-6028(98)80028-9
  28. M. Chen, Z. L. Pei, X. Wang, Y. H. Yu, X. H. Liu, C. Sun and L. S. Wen, J. Phys. D: Appl. Phys., 33, 2538 (2000). https://doi.org/10.1088/0022-3727/33/20/304