Recent Research Trends on Separation of CO2 Emitted From Steelmaking Process using Gas Hydrate Technology

가스 하이드레이트 형성 원리를 이용한 철강공정 배기가스 중 CO2 분리기술에 대한 최근 연구 동향

  • Lee, Bo Ram (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Ryu, Jun-Hyung (Department of Energy & Environmental Systems, Dongguk University) ;
  • Han, Kunwoo (Research Institute of industrial Science & Technology) ;
  • Park, Da-Hye (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, In-Beum (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 이보람 (포항공대 화학공학과) ;
  • 류준형 (동국대학교 에너지환경시스템학부) ;
  • 한건우 (포항산업과학연구원) ;
  • 박다혜 (포항공대 화학공학과) ;
  • 이건홍 (포항공대 화학공학과) ;
  • 이인범 (포항공대 화학공학과)
  • Received : 2009.11.10
  • Accepted : 2009.12.22
  • Published : 2010.04.30

Abstract

Gas hydrates are crystalline solids composed of water and gas molecules. Water molecules are linked through hydrogen bonding and create cavities(host lattice) that can capture a large variety of guest molecules under appropriate conditions, generally high pressure and low temperature. Recently, many researchers try to apply gas hydrates to industrial processes to capture greenhouse gases due to the facts that the process is eco-friendly and target gas molecules can be preferentially captured. In this paper, we introduced recent studies on $CO_2$ and $CO_2-N_2$ mixture hydrates to evaluate the feasibility of industrial application of gas hydrate technology to $CO_2$ capture process. Specifically, we put emphasis on the technical feasibility of $CO_2$ separation in steel industry using gas hydrate formation principles.

가스 하이드레이트는 고압과 저온 조건에서 객체분자(guest molecule)인 저 분자량의 가스와 주체분자(host molecule)인 물 분자가 결합하여 고체상으로 형성된 화합물을 일컫는다. 물과 가스에 의해서 형성이 된다는 점, 포집 가스의 종류에 따라 다양한 결정구조가 형성되며 선택적으로 가스를 포획할 수 있는 장점으로 인하여 이를 지구온난화 가스 저감을 위한 산업공정에 활용하는 연구가 최근 활발히 진행되고 있다. 본 논문에서는 $CO_2$ 또는 $CO_2-N_2$ 하이드레이트에 관한 전반적인 최근 연구 동향을 파악하여 이를 실제 산업 현장에 적용하는 경우에 대한 기술적 가능성을 모색해 본다. 특히 대규모 $CO_2$가 배출되면서도 이에 해당하는 연구가 활발히 진행되지 않았던 제철 공정에 대한 적용성을 중점적으로 검토하였다.

Keywords

References

  1. Houghton, J. T., Meira Fildo, L. G., Collander, B. A., Harris, N., Kattenberg, A. and Maskell, K., Climate change 1995: The Science of Climate Change, Cambridge University Press, Cambridge, UK(1996).
  2. Lee, H., Lee, C. S. and Kang, J. M., "Carbon dioxide Ocean Sequestration Using Gas Hydrate," HWAHAK KONGHAK, 41(2), 135(2003).
  3. Kim, J. S., A Climatic change and $CO_2$ Separation technologies, NICE, 25, 5(2007).
  4. Yoon, J.-H. and Lee, H., "Clathrate Phase Equilibria for the Water-Phenol-Carbon Dioxide System," AIChE J., 43, 1884-1893(1997). https://doi.org/10.1002/aic.690430723
  5. Seo, Y. and Lee, H., "A New Hydrate-Based Recovery Process for Removing Chlorinated Hydrocarbons from Aqueous Solutions," Environ. Sci. Technol., 35, 3386-3390(2001). https://doi.org/10.1021/es010528j
  6. Kang, S. P. and Lee, H., "Recovery of $CO_2$ from Flue Gas Using Gas Hydrates: Thermodynamic Verification through Phase Equilibrium Measurements," Environ. Sci. Technol., 34, 4397-4400(2000). https://doi.org/10.1021/es001148l
  7. Sloan, E. D., Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker, New York(1998).
  8. Jeffrey, G. A. and McMullan, R. K., Progress Inorganic Chemistry, 8, 43(1967). https://doi.org/10.1002/9780470166093.ch2
  9. Gudmundsson, J. S., Parlaktuna, M., Levik, O. I. and Andersson, V., "Laboratory for Continuous Production of Natural Gas Hydrates," Annals of the New York Academy of Sciences, 912, 851(2000).
  10. Javanmardi, J., Nasrifar, K., Najibi, S. H. and Moshfeghian, M., "Economic Evaluation of Natural Gas Hydrate as An Alternative for Natural Gas Transportation," Applied Thermal Engineering, 25, 1708-1723(2005). https://doi.org/10.1016/j.applthermaleng.2004.10.009
  11. Lee, H., Lee, J.-W., Kim, D. Y., Park, J., et al., "Tuning Clathrate Hydrates for Hydrogen Storage", Nature, 434, 7034, 743(2005). https://doi.org/10.1038/nature03457
  12. Lee, J. D., Kim, Y. S., Lee, H. J. and Kim, Y. D., "A Study of Desalination Using $CO_2$ Hydrate Technology," Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008).
  13. Lin, W., Delahaye, A. and Fournaison, L., "Phase Equilibrium and Dissociation Enthalpy for Semi-clathrate Hydrate of $CO_2$ +TBAB," Fluid Phase Equilibria, 264, 220-227(2008). https://doi.org/10.1016/j.fluid.2007.11.020
  14. Hatakeyama, T., Aida, E., Yokomori, T., Ohmura, R. and Ueda, T., "Fire Extinction Utilizing Carbon Dioxide Hydrate," Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008).
  15. Seo, Y., Kang, S. -P. and Lee, H., Gas Hydrate: The prospect of the Next generation energy source, NICE, 26, 3(2008).
  16. Linga, P., Adeyemo, A. and Englezos, P., "Medium-Pressure Clathrate Hydrate/membrane Hybrid Process for Postcombustion Capture of Carbon Dioxide," Environ. Sci. Technol., 42, 315-320 (2007).
  17. Kang, S.-P., Lee, H., Lee, C.-S. and Sung, W.-M., "Hydrate Phase Equilibria of the Guest Mixtures Containing $CO_2,\;N_2$ and Tetrahydrofuran," Fluid Phase Equilibria, 185, 101-109(2001). https://doi.org/10.1016/S0378-3812(01)00460-5
  18. Duc, N. H., Chauvy, F. and Herri, J.-M., "$CO_2$ Capture by Hydrate Crystallization - A Potential Solution for Gas Emission of Steelmaking Industry," Energy Conv. Manag., 48, 1313-1322 (2007). https://doi.org/10.1016/j.enconman.2006.09.024
  19. Shin, H. J., Lee, Y.-J., Im, J.-H., Han, K. W. and Yoon, J.-H., "Thermodynamic Stability, Spectroscopic Identification and Molecular Composition of Binary $CO_2$ Clathrate Hydrates," proceedings of the 6th International Conference on Gas Hydrate(ICGH 2008).
  20. Park, Y., Cha, M., Cha, J.-H., Shin, K. and Lee, H., "Swapping Carbon Dioxide for Complex Gas Hydrate Structures," Proceedings of the 6th International Conference on Gas Hydrate(ICGH 2008).
  21. Kumar, R., Wu, H.-J. and Englezos, P., "Incipient Hydrate Phase Equilibrium for Gas Mixtures Containing Hydrogen, " carbon dioxide and propane. Fluid Phase Equilibria, 244, 167(2006). https://doi.org/10.1016/j.fluid.2006.04.008
  22. Sloan, E. D. and Fleyfel, F., "Hydrate Dissociation Enthalpy and Guest Size," Fluid Phase Equilibria, 76, 123(1992). https://doi.org/10.1016/0378-3812(92)85082-J
  23. Zhong, Y. and Rogers, R. E., "Surfactant Effects on Gas Hydrate Formation, " Chem. Eng. Sci., 55, 4175-4187(2000). https://doi.org/10.1016/S0009-2509(00)00072-5
  24. Liu, N., Gong, G., Liu, D. and Xie, Y., "Effects of Additives on Carbon Dioxide Hydrate Formation," Proceedings of the 6th International Conference on Gas Hydrates(2008).
  25. Chen, Q., Yu, Y., Zeng, P. and Yang, W., "Effect of 1-butyl-3- Methylimidazolium Tetrafluoroborate on the Formation Rate of $CO_2$ Hydrate," J. Nat. Gas Chem., 17, 264(2008). https://doi.org/10.1016/S1003-9953(08)60061-4
  26. Linga, P., Kumar, R., Ripmeester, J. A. and Englezos, P., "Hydrate Processes for $CO_2$ Capture and Scale up Using a New Apparatus," Proceedings of the 6th ICGH(2008).
  27. Lee, S. Y. and Adams, E., "$CO_2$ Hydrate Composite for Ocean Carbon Sequestration", Environ. Sci. Technol., 37, 3701-3708(2003). https://doi.org/10.1021/es026301l
  28. Tajima, H., Yamasaki, A. and Kiyono, F., "Energy Consumption Estimation for Greenhouse Gas Separation Processes by Clathrate Hydrate Formation," Energy, 29, 1713-1729(2004). https://doi.org/10.1016/j.energy.2004.03.003
  29. Moridis, G. J., Collett, T. S., Boswell, R., Kurihara, M., Reagan, M. T., Koh, C. and Sloan, E. D., "Toward Production from Gas Hydrates: Status, Technology, and Potential," Society of Petroleum Engineers - Unconventional Reservoirs Conference, 30-71 (2008).
  30. Moridis, G. J., Collett, T. S., Boswell, R., Kurihara, M., Reagan, M. T., Koh, C. and Sloan, E. D., Toward production from gas hydrates: Current status, assessment of resources, and simulation- based evaluation of technology and potential, Society of Petroleum Engineers - Unconventional Reservoirs Conference 30-71(2008).
  31. Zhang, W.-D., Liu, Y.-J., Ren, S.-R. and Wang, R.-H., "Thermal Analysis on Heat Injection to Natural Gas Hydrate(NGH) Recovery," Nat. Gas Ind., 28(5), 77-79(2008).
  32. Iwasaki, T., Katoh, Y., Nagamori, S., Oya, N., and Takahashi, S., "Continuous Natural Gas Hydrate Crystallization Process by Static Mixing of Fluids," In: Proceedings of the 5th international conference on gas hydrates, 4, 1010(2005).
  33. Adisasmito, S., Frank, R. J. and Sloan, E. D., "Hydrates of Carbon Dioxide and Methane Mixtures", J. Chem. Eng. Data, 36(1), 68-71(1991). https://doi.org/10.1021/je00001a020
  34. Halmann, M. M. and Steinberg, M., Greenhouse gas carbon dioxide mitigation: science and technology, Boca Raton: Lewis Publishers(1999).
  35. Lee, B. R., Lee, H. J., Kim, S. H., Lee, J. D. and Kim, Y. D., "Surfactant Effects on SF6 Hydrate Formation," J. Colloid. Interface Sci., 331(1), 55-59(2009). https://doi.org/10.1016/j.jcis.2008.11.031
  36. Aaron, D. and Tsouris, C., "Separation of $CO_2$ from Flue Gas: A Review," Sep. Sci. Technol., 40, 321-348(2005). https://doi.org/10.1081/SS-200042244