• Title/Summary/Keyword: Hoop Ring

Search Result 24, Processing Time 0.025 seconds

Analysis and Measurement of Residual Stress of Al 7175 Ring Rolls after Quenching and stress Relieving (고강도 알루미늄 7175 합금 링롤재의 급냉 및 응력제거처리후 잔류응력 유한요소해석 및 측정)

  • 박성한;구송회;이방업;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.104-110
    • /
    • 1997
  • To predict the effect of ring expansion and ring compression on residual stress relief of Al 7175 ring rot]s, 2-D axisymmetric thermal analysis and elastoplastic analysis were performed. The residual stress distributions along the thickness of T73, T7351 and T7352 treated rings were measured using three step sectioning method. The measured results were compared to numerical ones for quenched and stress relieved rings. After quenching, calculated hoop and axial residual stresses were similar to measured ones for T73 treated rings. The residual stresses of T7351 and T7352 treated rings were decreased remarkably compared to T73 treated rings. The effect of axial residual stress relief was superior to that of hoop one, and also ring compression to ring expansion. It was concluded that ring compression is advantageous over ring expansion in view of stress relief effect and practicality, and vice versa in view of dimensional control and press power.

  • PDF

Design of Cold Extrusion Dies using Flexible Tolerance Method (플렉시블 허용오차법에 의한 냉간압출 금형설계)

  • Yeo H. T.;Choi Y.;Hur K. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.170-173
    • /
    • 2001
  • The design for cold extrusion dies is very important because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, two assumptions were proposed. First assumption was selected by yielding strength dependent on the to hoop stress of each ring in dies. Second assumption is that the maximum inner pressure is determined when yielding occurs in one ring of dies. To obtain the maximum inner pressure the flexible tolerance method was applied. A comparison of design values between the proposed method and the conventional method has been discussed.

  • PDF

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF

Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology (FTM과 RSM을 이용한 후방 압출 금형 설계)

  • Hur Kwan Do;Yeo Hong Tae;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

Finite Element Analysis of Glass Fiber Reinforced Plastic Pipes Under Internal Pressure (내압을 받는 복합 적층 파이프(GFRP) 구조의 유한요소 해석)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.101-109
    • /
    • 1994
  • A degenerated cylindrical shell element for modeling glass fiber reinforced plastic pipes is developed and its performance for static structural analysis under internal uniform pressure is evaluated. The element is a nine node degenerated solid shell element with reduced integration technique, addition of nonconforming displacement modes, and assumed strain method to improve convergence of analysis. Several numerical examples are solved and compared with analytical solutions and other F.E.M programs, The results show that the increment of fiber orientation in the GFRP pipes with reference to the longitudinal axis cause less radial displacements and much stiffness in the pipes. This is reasonable since the internal pressure will primarily cause hoop stresses in the ring and 90-angle ply GFRP ring carry these efficiently in pure tension.

  • PDF

A Study on the Design of Prestressed Die using Flexible Tolerance Method (플렉시블 허용오차법을 이용한 예압된 금형 설계에 관한 연구)

  • Hur, K.D.;Choi, Y.;Yeo, H.T.
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.116-122
    • /
    • 2003
  • In the Prestressed die design for cold working, many constraining conditions should be considered to insure the die safety and to improve the dimension accountancy products. Among the constraining conditions, yielding conditions, diameter ratios and interferences between rings are very important. . In this paper, therefore, flexible tolerance method was used in order to search the optimum values of design variables. The maximum inner pressure is used as objective function in this numerical analysis. In the design Process, it was also involved the safety factor to the yield strength of each ring by considering the allowable tensile or compressive hoop stress in each ring. The proposed technique has been applied to the die design of backward extrusion process, and it's analytical results have been compared with that of the conventional design method.

A Study on The Design of Prestressed Die for Spur Gear Forging (스퍼기어 단조용 예압된 금형의 설계에 관한 연구)

  • 허관도;여홍태;송요선
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • In this study, the design of prestressed die for spur gear forging have been investigated. The stress concentration at notch of the die insert is very important in the design of die for the forging of spur gear such as non-axisymmetric geometry. In the previous study, the flexible tolerance method was used in order to search the optimal value of design variables considering the constrain conditions. In the design process, it was also involved the safety factor to the yield strength of each ring by considering allowable tensile or compressive hoop stress in each ring. Using this technique, the die deign for spur gear forging has been successfully performed without yielding of the die after shrink fitting and during forging.

  • PDF

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on an Elastic Foundation - With Application to the Nuclear Reinforced Concrete Containment Structures- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(I) -철근 콘크리트 원자로 격납 건물을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • This is a basic study for the static and dynamic analysis on the elasto-plastic and elasto-viscoplastic of an axi-symmetric shell. The objective of this study was to investigate the mechanical characteristics of a nuclear reinforced concrete containment structure, which was selected as a model, by a numerical analysis using a finite element method. The structure was modeled with discrete ring elements of 8-noded isoparametric element rotating against the symmetrical axis, and the interaction between the foundation and the structure was modeled by Winkler's model. Also, the meridional tendon was modeled with 2-node truss elements, and the hoop tendon was done with point elements in two degrees of freedom. The effect of the tendon was considered without the increasement in total degree of freedom as the stiffness matrix of modeled tendon elements was assembled on the stiffness matrix of ring elements linked with the tendon. The results obtained from the analysis of an example were summarized as follows : 1. The stresses in the hoop direction on the interior and exterior surfaces of the structure were shown in changes of similar trend, and high stresses appeared on the structure wall 2. The stresses in the meridional direction on the interior and exterior surfaces were shown in change of different trend. Especially, the stresses at the junctions between the dome and the wall and between the wall and the bottom plate of the structure were very high, compared with those at other parts of the structure. 3. The stress changes in the direction of thickness on the crown of the dome were much linearly distributed. However, as the amount of tendon increased, the stresses in the upper and lower parts of the wall established with the tendon were shown stress concentration. 4. The stress changes in the direction of thickness on the center of the structure wall was linearly distributed in the all cases, and special stress due to the use of the tendon was not shown.

  • PDF

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.