• 제목/요약/키워드: Homology Modeling/docking

검색결과 52건 처리시간 0.025초

3D Computational Modeling of Human P-gp NBD2 with Papyriferic Acid Derivatives

  • Gadhe, Changdev G.
    • 통합자연과학논문집
    • /
    • 제5권3호
    • /
    • pp.190-194
    • /
    • 2012
  • Human P-gp is one of the protein responsible for the multidrug resistance (MDR) develpment. MDR is a major cause of the cancer chemotherapy. In this paper, we performed homology modeling, docking study of papayriferic acid into the P-gp nucleotide binding domain (NBD2). For human P-gp, X-ray crystal structure is not known yet. We developed homology model for human NBD2 using HlyB ABC transporter structure (PDB code: 1XEF, resolution 2.5 ${\AA}$). Docking study was performed using Autodock. Docking result was analyzed, which shows that ligand docks into steroid binding site and interacts through hydrophobic and hydrophilic interactions.

Homology Modeling and Molecular Docking Study of Translationally Controlled Tumor Protein and Artemisinin

  • Chae, Jin-Sun;Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • 제29권1호
    • /
    • pp.50-58
    • /
    • 2006
  • Translationally controlled tumor protein (TCTP), also known as histamine releasing factor (HRF), is found abundantly in different eukaryotic cell types. The sequence homology of TCTP between different species is very high, belonging to the MSS4/DSS4 superfamily of proteins. TCTP is involved in both cell growth and human late allergy reaction, as well as having a calcium binding property; however, its primary biological functions remain to be clearly elucidated. In regard to many possible functions, the TCTP of Plasmodium falciparum (Pf) is known to bind with an antimalarial agent, artemisinin, which is activated by heme. It is assumed that the endoperoxide-bridge of artemisinin is opened up by heme to form a free radical, which then eventually alkylates, probably to the Cys14 of PfTCTP. Study of the docking of artemisinin with heme, and subsequently with PfTCTP, was carried out to verify the above hypothesis on the basis of structural interactions. The three dimensional (3D) structure of PfTCTP was built by homology modeling, using the NMR structure of the TCTP of Schizosaccharomyces pombe as a template. The quality of the model was examined based on its secondary structure and biological function, as well as with the use of structure evaluating programs. The interactions between artemisinin, heme and PfTCTP were then studied using the docking program, FlexiDock. The center of the peroxide bond of artemisinin and the Fe of heme were docked within a short distance of $2.6{\AA}$, implying the strong possibility of an interaction between the two molecules, as proposed. When the activated form of artemisinin was docked on the PfTCTP, the C4-radical of the drug faced towards the sulfur of Cys14 within a distance of $2.48{\AA}$, again suggesting the possibility of alkylation having occurred. These results confirm the proposed mechanism of the antimalarial effect of artemisinin, which will provide a reliable method for establishing the mechanism of its biological activity using a molecular modeling study.

Homology Modeling and Docking Studies of Streptomyces peucetius CYP147F1 as Limonene Hydroxylase

  • Bhattarai, Saurabh;Liou, Kwangkyoung;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.917-922
    • /
    • 2012
  • Homology modeling of Streptomyces peucetius CYP147F1 was constructed using three cytochrome P450 structures, CYP107L1, CYPVdh, and CYPeryF, as templates. The lowest energy SPCYP147F1 model was then assessed for stereochemical quality and side-chain environment by Accelrys Discovery Studio 3.1 software. Further activesite optimization of the SPCYP147F1 was performed by molecular dynamics to generate the final SPCYP147F1 model. The substrate limonene was then docked into the model. The model-limonene complex was used to validate the active-site architecture, and functionally important residues within the substrate recognition site were identified by subsequent characterization of the secondary structure. The docking of limonene suggested that SPCYP147F1 would have broad specificity with the ligand based on the two different orientations of limonene within the active site facing to the heme. Limonene with C7 facing the heme with distance of $3.4{\AA}$ from the Fe was predominant.

Toward the Virtual Screening of α-Glucosidase Inhibitors with the Homology-Modeled Protein Structure

  • Park, Jung-Hum;Ko, Sung-Min;Park, Hwang-Seo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.921-927
    • /
    • 2008
  • Discovery of $\alpha$-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of diabetes and the other carbohydrate mediated diseases. As a method for the discovery of new novel inhibitors of $\alpha$-glucosidase, we have addressed the performance of the computer-aided drug design protocol involving the homology modeling of $\alpha$-glucosidase and the structure-based virtual screening with the two docking tools: FlexX and the automated and improved AutoDock implementing the effects of ligand solvation in the scoring function. The homology modeling of $\alpha$-glucosidase from baker’s yeast provides a high-quality 3-D structure enabling the structure-based inhibitor design. Of the two docking programs under consideration, AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands to the extent of 5-fold enhancement of hit rate in database screening when 1% of database coverage is used as a cutoff. A detailed binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of $\alpha$- glucosidase through the simultaneous establishment of the multiple hydrogen bond and hydrophobic interactions. The present study demonstrates the usefulness of the automated AutoDock program with the improved scoring function as a docking tool for virtual screening of new $\alpha$-glucosidase inhibitors as well as for binding mode analysis to elucidate the activities of known inhibitors.

The Identification of Binding Mode for Arabidopsis thaliana 7-Keto-8-aminopelargonic Acid Synthase (AtKAPAS) Inhibitors

  • Cho, Jae-Eun;Kang, Sun-Young;Choi, Jung-Sup;Ko, Young-Kwan;Hwang, In-Taek;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1597-1602
    • /
    • 2012
  • In this study, we determined the 3D-structure of Arabidopsis thaliana KAPAS by homology modeling. We then investigated the binding mode of compounds obtained from in-house library using computational docking methods. From the flexible docking study, we achieved high dock scores for the active compounds denoted in this study as compound $\mathbf{3}$ and compound $\mathbf{4}$. Thus, we highlight the flexibility of specific residues, Lys 312 and Phe 172, when used in active sites.

Homology Modeling and Molecular Docking Analysis of Streptomyces peucetius CYP125A4 as C26 Monooxygenase

  • Lee, Seung-Won;Lee, Na-Rae;Lee, Ji-Hun;Oh, Tae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1885-1889
    • /
    • 2012
  • Among 23 cytochrome P450s, CYP125A4 was proposed as a putative monooxygenase based on the high level of amino acid sequence homology (54% identity and 75% similarity) with the well characterized C27-steroid $Mycobacterium$ $tuberculosis$ CYP125A1. Utilizing MTBCYP125A1 as a template, homology modeling of SPCYP125A4 was conducted by Accelrys Discovery Studio 3.1 software. The modeled SPCYP125A4 structure with lowest energy value was subsequently assessed for its stereochemical quality and side-chain environment. The final model was generated by showing its active site through the molecular dynamics. The docking of steroids showed broad specificity of SPCYP125A4 with different orientation of ligand within active site facing the heme. One poses of C27-steroid with C26 facing the heme with distance of 3.734 ${\AA}$ from the Fe were predominant.

Homology Modeling of Cysteinyl Leukotriene1 Receptor

  • Babu, Sathya;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.13-18
    • /
    • 2015
  • Cysteinyl leukotrienes are inflammatory mediators having important role in pathophysiological conditions such as asthma, allergic rhinitis and have been implicated in a number of inflammatory conditions including cardiovascular and gastrointestinal diseases. Most of the disease regulatory actions of the CysLTs are mediated through CysLT1 receptor. Hence in the present study, homology modeling of CysLT1 was performed because the availability of 3D structure would enhance the development of new drugs for inflammatory diseases. However the templates identified have low sequence identity which increases the complexity of modeling. Hence, homology modeling was performed using single template, multiple templates and also using threading I-TASSER server. The best model was selected based on the validation of the generated models using Ramachandran and ERRAT plot. The model developed could be useful for identifying crucial residues and docking study.

Binding Mode Prediction of 5-Hydroxytryptamine 2C Receptor Ligands by Homology Modeling and Molecular Docking Analysis

  • Ahmed, Asif;Nagarajan, Shanthi;Doddareddy, Munikumar Reddy;Cho, Yong-Seo;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2008-2014
    • /
    • 2011
  • Serotonin or 5-hydroxytryptamine subtype 2C ($5-HT_{2C}$) receptor belongs to class A amine subfamily of G-protein-coupled receptor (GPCR) super family and its ligands has therapeutic promise as anti-depressant and -obesity agents. So far, bovine rhodopsin from class A opsin subfamily was the mostly used X-ray crystal template to model this receptor. Here, we explained homology model using beta 2 adrenergic receptor (${\beta}$2AR), the model was energetically minimized and validated by flexible ligand docking with known agonists and antagonists. In the active site Asp134, Ser138 of transmembrane 3 (TM3), Arg195 of extracellular loop 2 (ECL2) and Tyr358 of TM7 were found as important residues to interact with agonists. In addition to these, V208 of ECL2 and N351 of TM7 was found to interact with antagonists. Several conserved residues including Trp324, Phe327 and Phe328 were also found to contribute hydrophobic interaction. The predicted ligand binding mode is in good agreement with published mutagenesis and homology model data. This new template derived homology model can be useful for further virtual screening based lead identification.

Comparative Homology Modeling and Ligand Docking Study of Human Catechol-O-Methyltransferase for Antiparkinson Drug Design

  • Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1695-1700
    • /
    • 2005
  • Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an S-adenosylmethionine (SAM, AdoMet) dependent methyltransferase, and is related to the functions of the neurotransmitters in various mental processes, such as Parkinson’s disease. COMT inhibitors represent a new class of antiparkinson drugs, when they are coadministered with levodopa. Based on x-ray structure of rat COMT (rCOMT), the three dimensional structure of human COMT (hCOMT) was constructed by comparative homology modeling using MODELLER. The catalytic site of these two proteins showed subtle differences, but these differences are important to determine the characterization of COMT inhibitor. Ligand docking study is carried out for complex of hCOMT and COMT inhibitors using AutoDock. Among fifteen inhibitors chosen from world patent, nine models were energetically favorable. The average value of heavy atomic RMSD was 1.5 $\AA$. Analysis of ligand-protein binding model implies that Arg201 on hCOMT plays important roles in the interactions with COMT inhibitors. This study may give insight to develop new ways of antiparkinson drug.

3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling

  • Lee, Jee-Young;Lee, Sung-Ah;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.941-946
    • /
    • 2007
  • Bacillus halodurans O-methyltransferase (BhOMT) is a S-adenosylmethionine (SAM or AdoMet) dependent methyltransferase. Three dimensional structure of the BhOMT bound to S-adenosyl-L-homocysteine (SAH or AdoHcy) has been determined by comparative homology modeling. BhOMT has 40% sequence identity with caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) from alfalfa. Based on x-ray structure of CCoAOMT, three dimensional structure of BhOMT was determined using MODELLER. The substrate binding sites of these two proteins showed slight differences, but these differences were important to characterize the substrate of BhOMT. Automated docking study showed that four flavonoids, quercetin, fisetin, myricetin, and luteolin which have two hydroxyl groups simultaneously at 3'- and 4'-position in the B-ring and structural rigidity of Cring resulting from the double bond characters between C2 and C3, were well docked as ligands of BhOMT. These flavonoids form stable hydrogen bondings with K211, R170, and hydroxyl group at 3'-position in the Bring has stable electrostatic interaction with Ca2+ ion in BhOMT. This study will be helpful to understand the biochemical function of BhOMT as an O-methyltransferase for flavonoids.