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Discovery of a-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the 
treatment of diabetes and the other carbohydrate mediated diseases. As a method for the discovery of new novel 
inhibitors of a-glucosidase, we have addressed the performance of the computer-aided drug design protocol 
involving the homology modeling of a-glucosidase and the structure-based virtual screening with the two 
docking tools: FlexX and the automated and improved AutoDock implementing the effects of ligand solvation 
in the scoring function. The homology modeling of a-glucosidase from baker’s yeast provides a high-quality 
3-D structure enabling the structure-based inhibitor design. Of the two docking programs under consideration, 
AutoDock is found to be more accurate than FlexX in terms of scoring putative ligands to the extent of 5-fold 
enhancement of hit rate in database screening when 1% of database coverage is used as a cutoff. A detailed 
binding mode analysis of the known inhibitors shows that they can be stabilized in the active site of a- 
glucosidase through the simultaneous establishment of the multiple hydrogen bond and hydrophobic 
interactions. The present study demonstrates the usefulness of the automated AutoDock program with the 
improved scoring function as a docking tool for virtual screening of new a-glucosidase inhibitors as well as for 
binding mode analysis to elucidate the activities of known inhibitors.
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Introduction

Glucosidases catalyze the final step in the digestive 
process of carbohydrates by the hydrolysis of a glycosidic 
bond in oligosaccharides. They are responsible for the 
catalytic cleavage of a glycosidic bond with specificity 
depending on the number monosaccharides, the position of 
cleavage site, and the configuration of the hydroxyl groups 
in the substrate.1 The most extensively studied are a- and & 
glucosidases that are known to catalyze the hydrolysis of the 
glycosidic bonds involving a terminal glucose at the cleav
age site through a- and ^-linkages at the anomeric center. 
These two glucosidases differ in how to position their two 
carboxylic acid sidechains during catalysis:2 one plays the 
role of a catalytic nucleophile attacking the anomeric center, 
and the other acts as an acid catalyst weakening the C-O 
bond by protonation. Of the two popular glucosidases, a- 
glucosidase (EC 3.2.1.20) has drawn a special interest of the 
pharmaceutical research community because it was shown 
in earlier studies that the inhibition of its catalytic activity 
resulted in the retardation of glucose absorption and the 
decrease in postprandial blood glucose level.3-5 Therefore, 
effective a-glucosidase inhibitors may serve as chemothera
peutic agents for clinic use in the treatment of diabetes and 
obesity. Due to the catalytic role in digesting carbohydrate 
substrates, a-glucosidase has also been well appreciated as a 
therapeutic target for the other carbohydrate mediated di
seases including cancer,6 viral infections,7,8 and hepatitis.9

Since the discovery of acarbose that is the first member of 
a-glucosidase inhibitors approved for the treatment of type 2 
diabetes,10 a variety of a-glucosidase inhibitors have been 

discovered and recently reviewed in an extensive fashion.11 
These include transition state analogues,12 newly identified 
synthetic compounds,13-20 and natural products isolated from 
a variety of species.21-23 Most of the a-glucosidase inhibitors 
reported in the literature stem from either the isolation of 
new scaffolds by high throughput screening or the gener
ation of the improved derivatives of pre-existing inhibitor 
scaffolds. So far the rational drug design protocol has not 
been applied for a-glucosidases because the structural 
investigations have lagged behind the mechanistic and 
pharmacological studies. Indeed, structural information of 
a-glucosidases has thus been limited to those of a few 
bacterial strains only in ligand-free forms.24,25 The lack of 
structural information about the nature of the interactions 
between a-glucosidases and small molecule inhibitors has 
thus made it a difficult task to discover good lead com
pounds based on the structure-based inhibitor design.

In the present study, we address the performance of a 
computer-aided drug design protocol involving the homo
logy modeling of a-glucosidase and the structure-based 
virtual screening with docking simulation as a tool for 
identifying novel classes of potent a-glucosidase inhibitors. 
Two popular docking programs, FlexX and AutoDock, are 
used in this work. The characteristic feature that discirimi- 
nates our virtual screening approach from the others lies in 
the implementation of an accurate solvation model in 
calculating the binding free energy between a-glucosidase 
and its putative ligands, which would have the effect of 
increasing the hit rate in enzyme assay.26,27 We select the a- 
glucosidase from baker’s yeast as the target protein because 
it has been used most extensively in biological assays to 
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evaluate the newly discovered ^-glucosidase inhibitors. To 
the best of our knowledge, we report the first example for 
the usefulness of the structure-based virtual screening to 
identify novel o-glucosidase inhibitors. It will be shown that 
the docking simulation with the improved binding free 
energy function can be a valuable tool for enriching the 
chemical library used in screening assays with molecules 
that are likely to have a desired biological activity.

Computation지 Methods

Homology modeling of yeast o■인ucosidase. Although 
the X-ray crystal structures of a few bacterial o-glucosidases 
have been reported, structural information is still unavailable 
for the eukaryotic o-glucosidase enzymes commonly used 
in biological assays, such as that from baker’s yeast. In order 
to obatin the three-dimensional structure of o-glucosidase 
from baker’s yeast, therefore, we carried out the homology 
modeling using the X-ray structure of oligo-1,6-glucosidase 
from Bacillus cereus as the template.28 This homology 
modeling started with the retrieval of the amino acid 
sequence of the o-glucosidase MAL12 from baker’s yeast 
that comprises 584 amino acid residues from the SWISS- 
PROT protein sequence data bank (http://www.expasy.org/ 
sprot/; accession number P53341).29 In order to find a proper 
structural template for homology modeling, we searched for 
the Protein Data Bank (PDB) at National Center for 
Biotechnology and Information (NCBI) using BLAST and 
PSIBLAST algorithms with the amino acid sequence of the 
target as input. The results showed that oligo-1,6-glucosid- 
ase from Bacillus cereus reveals the highest sequence 
identity (38.5%) with the target. Therefore, its X-ray crytal 
structure (PDB ID: 1UOK) was selected as the template for 
homology modeling. Although 4-o-glucanotransferase from 
Thermotoga maritima revealed a sequence identity of about 
30% with the target protein, it was not used in homology 
modeling because the number of aligned amino acids 
amount to at most 300 as compared to 575 in case of oligo- 
1,6-glucosidase from Bacillus cereus. Sequence alignment 
between o-glucosidase from baker’s yeast and oligo-1,6- 
glucosidase from Bacillus cereus was then obtained with the 
ClustalW package30 using the BLOSUM matrices for scor
ing the alignments. The parameters of GAP OPEN, GAP 
EXTENTION, and GAP DISTANCE were set equal to 10, 
0.05, 8, respectively. Opening and extension gap penalties 
were changed systematically, and the obtained alignment 
was inspected for violation of structural integrity in the 
structurally conserved regions. Based on the best-scored 
sequence alignment, the three dimensional structure of o- 
glucosidase from baker’s yeast was constructed using the 
MODELLER 6v2 program.31 In this model building, we 
employed an optimization method involving conjugate 
gradients and molecular dynamics to minimize violations of 
the spatial restraints. With respect to the structure of gap 
regions, the coordinates were built from a randomized and 
distorted structure that is located approximately between the 
two anchoring regions as implemented in MODELLER 6v2. 

To increase the accuracy of calculated structure, the loop 
modeling was also performed with the enumeration 
algorithm.32 Then, we calculated the conformational energy 
of the predicted structure of o-glucosidase with ProSa 2003 
program33 for the purpose of a final evaluation.

Construction of a docking library. The docking library 
for o-glucosidase comprises its own 20 known inhibitors as 
well as 980 common compounds selected from the MDL 
Drug Data Report (MDDR) database. This selection was 
based on drug-like filters that adopt only the compounds 
with physicochemical properties of potential drug candi- 
dates34 and without reactive functional group(s). All of the 
compounds included in the docking library were then sub
jected to the Corina program to generate their 3-D coordi
nates, followed by the assignment of Gasteiger-Marsilli 
atomic charges.35 The chemical structures of the 20 known 
inhibitors of o-glucosidase seeded in the docking library are 
shown in Supporting Information.

Virtu지 screening of ^glucosidase inhibitors with Auto
Dock. We used the automated version of the AutoDock 
program36 in the structure-based virtual screening of o- 
glucosidase inhibitors because the outperformance of its 
scoring function over those of the others had been shown in 
several target proteins.37 The atomic coordinates of o-gluco- 
sidase obtained from the homology modeling were used as 
the receptor model in the virtual screening with docking 
simulations. A special attention was paid to assign the 
protonation states of the ionizable Asp, Glu, His, and Lys 
residues. The side chains of Asp and Glu residues were 
assumed to be neutral if one of their carboxylate oxygens 
pointed toward a hydrogen-bond accepting group including 
the backbone aminocarbonyl oxygen at a distance within 3.5 
A, a generally accepted distance limit for a hydrogen bond 
of moderate strength.38 Similarly, the side chains of Lys 
residues were protonated unless the NZ atom was in a close 
proximity of a hydrogen-bond donating group. The same 
procedure was also applied to determine the protonation 
states of ND and NE atoms in the side chains of His 
residues.

In the actual docking simulation of the compounds in the 
docking library, we used the empirical AutoDock scoring 
function improved by the implementation of a new solvation 
model for a compound. The modified scoring function has 
the following form:

NG編 = Www 提 (섶 - B) + Whbond 提 E(t)C - 
i=u > i f 将 ，=1丿 > i 、r

+ Wt야Ntor + Wsol £ S\Oc^ - £ 
i=1 ( J > i

(1) 
where Wvdw, Whbond, Wec, Wor, and Wsol are the weighting 
factors of van der Waals, hydrogen bond, electrostatic inter
actions, torsional term, and desolvation energy of inhibitors, 
respectively. riJ represents the interatomic distance, and AiJ, 
Bij, Cij, and Dij are related to the depths of the potential 
energy well and the equilibrium separations between the two 
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atoms. In this study, AMBER force field parameters were 
assigned for calculating the van der Waals interactions and 
the internal energy of a ligand as implemented in the Auto
Dock program. The hydrogen bond term has an additional 
weighting factor, E(t), representing the angle-dependent 
directionality. With respect to the distant-dependent di
electric constant, £(rj), a sigmoidal function proposed by 
Mehler et al.39 was used in computing the interatomic 
electrostatic interactions between a receptor protein and a 
ligand molecule. In the entropic term, Ntor is the number of 
sp3 bonds in the ligand. In the desolvation term, Si and Vi are 
the solvation parameter and the fragmental volume of atom 
i,40 respectively, while Occ严x stands for the maximum 
atomic occupancy. In the calculation of molecular solvation 
free energy term in equation (1), we used the atomic para
meters recently developed by Kang et al.41 because those of 
the atoms other than carbon were unavailable in the current 
version of AutoDock. This modification of the solvation free 
energy term is expected to increase the accuracy in virtual 
screening, because the underestimation of ligand solvation 
often leads to the overestimation of the binding affinity of a 
ligand with many polar atoms.27

The docking simulation of a compound in the docking 
library started with the calculation of the three-dimensional 
grids of interaction energy for all of the possible atom 
types present in chemical database. These uniquely defined 
potential grids for the receptor protein were then used in 
common for docking simulations of all compounds in the 
docking library. As the center of the common grids in the 
active site, we used the center of mass coordinates of the 
docked structure of the probe molecule, acarbose, whose 
binding mode had been known in the active site of 4-a- 

glucanotransferase that is closely similar in structure to the 
template (oligo-1,6-glucosidase) used in the homology 
modeling.42 The calculated grid maps were of dimension 61 
x 61 x 61 points with the spacing of 0.375 A, yielding a 
receptor model that includes atoms within 22.9 A of the grid 
center. For each compound in the library, 10 docking runs 
were performed with the initial population of 50 individuals. 
Maximum number of generations and energy evaluation 
were set to 27,000 and 2.5 x 105, respectively.

Virtu지 screening of a-glucosidase inhibitors with FlexX. 
All default parameters, as implemented in Sybyl 6.9, were 
used for all target proteins and compounds in docking 
simulations. The active site and the interaction surface of the 
receptor were defined by using the reference ligand, acarbose, 
whose binding mode had been calculated with docking 
simulations and cutoff distance of 6.5 A. The conformational 
flexibility of a ligand was modeled by a discrete set of pre
ferred torsional angles for acyclic single bonds. Base frag
ments were then selected automatically with the maximum 
number of 4. A base fragment was placed into the active site 
based on the two algorithms. The first one superimposes 
triplets of interaction centers of the base fragment with 
triples of compatible interaction sites. Second, the matching 
algorithm was used when the base fragment had fewer than 
three interaction centers. The empirical scoring function 
given in equation (2) was used for ranking the binding 
modes of each ligand in the prepared compound databases:43

△Gbind = AG。+ Whbond £ f (AR,Aa) + W*”* £ f (AR,A a) 
hbonds ionic

+ Waro/aro £ f (AR,Aa) + Wlipo £f ^(AR) + Wto-Ntor . (2) 
aro/aro lipo

MAL12 9 TEPKWWKEATIYQIYPASFKDSNNDGWGDLKGITSKLQYIKDLGVDAIWVCPFYDSPQQD 68
016GB 1 MEKQWWKE SWYQIYPRS FMD SNGDGIGDLRGIISKLD YLKELGIDVIWLS PVYE S PNDD 60
MAL12 69 MGYDISNYEKVWPTYGTNEDCFELIDKTHKLGMKFITDLVlJHbsTEHEWFKESRSSKTN 128
016GB 61 NGYDISDYCKIMNEFGTMEDWDELLHEMHERNMKLMMDLWls|H|rSDEHNWFIESRKSKDN 120

MAL12 129 PKRDWFFWRPPKGYDAEGKPIPPNNWKSFFGGSAWTFDETTNEFYLRLFASRQVDLNWEN 188
016GB 121 ------------------- ------------------------------------------- 174
MAL12 189 EDCRRAIFESAVGFWLDHGVDGFRjElrAGLYSKRPGLPDSPIFDKTSKLQHPNWGSHNGP 248
016GB 175 EKVRQDVYEMMK-FWLEKGIDGFRL^pINFISKEEGLPTVETEEEGYVSGHKHF——231

MAL12 249 RIHEYHQELHRFMKNRVKDGREIMTVC&AHGS--DNALYTSAARYEVSEVFSFTHVEVG 306
016GB 232 NIHKYLHEMN------------------------------------------------------287

MAL12 307 TSPFFRYNIVPFTLKQWKEAIASNFLFINGTDSWATTYIEjfiBQARSITRFADDSPKYRK 366
016GB 288 SGEGGKWDVKPCSLLTLKENLTKWQKALEHTG-WNSLYWNl«dQPRVVSRFGNDG-MYRI 345

MAL12 367 ISGKLLTLLECSLTGTLYVYQGQEIGQINFKEWPIEKYEDVDVKNNYEIIKKSFGKNSKE 426
016GB 346 E SAKMLATVLHMMKGTPYIYQGEEIGMTNVRFE S IDE YRDIETLN—— 402
MAL12 427 MKDFFKGIALLSRDHSRTPMPWTKDKPNAGFTGPDVKPWFLLNESFEQGINVEQESRDDD 486
016GB 403 IEKVMQSIYIKGRDNARTPMQWD-DQNHAGFT--TGEPWITVNPNYKE-INVKQAIQNKD 458
MAL12 487 SVLNFWKRALQARKKYKELMIYGYDFQFIDLDSDQIFSFTKEYEDKTLFAALNFSGEEIE 546
016GB 459 SIFYYYKKLIELRKN-NEIWYG-SYDLILENNPSIFAYVRTYGVEKLLVIANFTAEECI 516
MAL12 547 FSLPREG--ASLSFILGNYDDTD―VSSRVLKPWEGRIYLVK 584
016GB 517 FELPEDISYSEVELLIHNYDVENGPIENITLRPYEAMVFKLK 558

Figure 1. Sequence alignment between a-glucosidase (MAL12) and oligo-1,6-glucosidase (O16GB). The identity and the similarity bet
ween the corresponding residues are indicated in red and green, respectively. The active site residues are indicated in a blue rectangular box.
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Here, f (AR,A a) is a scaling function penalizing deviations 
/•*，,•*■、、from the ideal distances and angles and f (AR) penalizes 

the forbiddingly close contacts for lipophilic interactions of 
nonaromatic groups.

Results and Discussion

Homology Modeling of a■인ucosidase. Figure 1 displays 
the sequence alignment between a-glucosidase MAL12 
from baker’s yeast and oligo-1,6-glucosidase from Bacillus 
cereus (O16GB). According to this alignment, the sequence 
identity and the similarity amount to 38.5% and 58.4%, 
respectively. Judging from such a high sequence homology, 
a high-quality 3D structure of a-glucosidase can be expected 
in the homology modeling. It is indeed well known that a 
homology-modeled structure of a target protein can be 
accurate enough to be used in docking studies once the 
sequence identity between target and template approaches 
40%.44 Based on the sequence alignment shown in Figure 1, 
ten structural models of a-glucosidase were calculated and 
the one with the lowest value of MODELLER objective 
function was selected as the final model to be used in the 
virtual screening.

Figure 2 shows the structure of a-glucosidase obtained 
from the homology modeling in comparison with the X-ray 
crystal structure of oligo-1,6-glucosidase that was used as 
the template. The target and the template possess a very 
similar folding structure and are superimposable over the 
main chain atoms. The two enzymes also share the catalytic 
residues that are situated in their respective active sites in a 
similar fashion. This is not surprising because both enzymes 
catalyze the hydrolysis of terminal glycosidic bond of carbo- 
hydrates.44 The van der Waals volumes of a-glucosidase and 
oligo-1,6잉ucosidase are calculated to be 40,928 and 41,073 
A3, respectively. Such a close similarity in the van der Waals 
volume and the possession of 18 additional amino acids in 
the sequence alignment indicate that a-glucosidase should 
be more compact in amino acid packing than oligo-1,6- 
glucosidase. Such a structural difference may be related with 

the differentiations of the active site geometry and substrate 
specificity as well as the catalytic efficiency. Indeed, gluco
sidases have generally exhibited a high specificity in enzyme 
catalysis by cleaving only one type of glycosidic linkage in a 
given anomeric configuration.45

The final structural model of a-glucosidase obtained from 
homology modeling was tested with the ProSa 2003 pro
gram by examining whether the interaction of each residue 
with the remainder of the protein is maintained favorable. 
This program calculates the knowledge-based mean fields to 
judge the quality of protein folds, and has been widely used 
to measure the stability of a protein conformation. More 
specifically, the energy profile of a protein is calculated 
using the potential of mean forces derived from a large set of 
known protein structures. The main criterion is that the 
interaction energy of each residue with the remainder of the 
protein should have a negative value. Figure 3 shows the 
ProSa 2003 energy profile of the homology-modeled a- 
glucosidase in comparison to that of the X-ray structure of 
oligo-1,6-glucosidase. We note that the ProSa energy of a- 
glucosidase remains negative for all amino acid residues 
except for a few around the residue number of 210, indi
cating the acceptability of the homology modeled structure. 
This result supports the possibility that the homology 
modeling with a high sequence identity and a high-quality 
template structure can produce a 3-D structure of a target 
protein comparable in accuracy to that determined from X- 
ray crystallography.44

As a further evaluation of the homology-modeled 
structure of a-glucosidase, the final model obtained with 
MODELLER was subject to stereochemical analysis with 
the PROCHECK program. The results show that the back
bone F and Y dihedral angles of 69.3%, 25.1%, and 5.6% of 
the residues are located within most favorable, additionally 
allowed, and generously allowed regions of the Ramachan- 
dran plot, respectively, with no residue in disallowed region. 
This good stereochemical quality is not surprising for the 
high sequence identity (38.5%) and similarity (58.4%) bet
ween the template and the target as illustrated in Figure 1.

Figure 2. Comparative view of (a) homology-modeled structure of 
a잉ucosidase and (b) X-ray crystal structure of oligo-1,6-glucosid- 
ase.

residue number

Figure 3. Comparison of the Pro Sa energy profiles for the 
homology-modeled structure of a잉ucosidase (red) and the X-ray 
structure of oligo-1,6-glucosidase (green).
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Figure 4. The cumulative percentage of known a-glucosidase 
inhibitors recovered by virtual screening as a function of the top
scoring fraction of database selected for generating a hit list.

Virtual screening. We have tested the performances of 
the automated AutoDock and FlexX in the structure-based 
virtual screening of a-glucosidase inhibitors. This compara
tive evaluation was done with the homology-modeled struc
ture of a-glucosidase as the target protein and the docking 
library that contains 980 randomly chosen drug-like mole
cules and 20 known inhibitors. Compared in Figure 4 are the 
percentages of true hits retrieved by the AutoDock and 
FlexX in increasing fractions of the starting database. The 
horizontal and vertical axes represent the top percentage of 
one thousand of all tested compounds and the percentage of 
the known inhibitors in a given top percentage, respectively. 
We note that the AutoDock performs better than FlexX in 
providing the highest enrichment at every fraction cutoff. It 
picks 5 actives seeded in top 1% of the database as com
pared to 1 for FlexX. The performance of the AutoDock 
becomes clearer when one compares the ability to pick out 
the most actives out of a cumulative total of 20 used in this 
study. When 10% of the database is considered, for example, 
the AutoDock retrieved a total of 9 actives out of the total 20 
known inhibitors, contrary to only 4 actives by FlexX. Thus, 
the outperformance of the automated AutoDock reveals a 

consistency for all cutoffs, indicating that it can be a promis
ing docking tool for virtual screening of a-glucosidase 
inhibitors.

The difference in the accuracies of AutoDock and FlexX 
in database screening can be understood by comparing their 
respective scoring functions. It is common to the two 
docking programs that their scoring functions include the 
angle-dependent directionality of a hydrogen bond and 
entropic penalty for the formation of a protein-ligand com
plex. On the other hand, there are two characteristic features 
that discriminate the scoring function of AutoDock from that 
of FlexX: the use of a sigmoidal distance-dependent di
electric function in the electrostatic term and desolvation 
cost for complexation of a ligand in the binding site. The 
former has an effect of modeling solvent screening in the 
electrostatic interactions between charged atoms.39 This is 
important because the top-scored ligands obtained with a 
small value of dielectric constant tend to possess many 
atoms with high partial charges as a consequence of the 
overestimation of electrostatic interactions. The effect of 
ligand solvation is also important, particularly in comparing 
many putative ligands that differ in polarity and size. The hit 
compounds may have a severe charge separation on their 
molecular structures or be larger than expected unless the 
energy of the solvated state is considered in docking simu- 
lations.27 Thus, a significant outperformance of AutoDock 
over FlexX should be attributed to the inclusion of solvation 
term in the scoring function as well as a more proper 
description of electrostatic interactions between protein and 
ligand atoms.

Molecular modeling studies of the known inhibitors. 
Shown in Figure 5 are the chemical structures of the known 
a-glucosidase inhibitors in the top 1% of all of the tested 
compounds obtained with AutoDock (1-5) and FlexX (6). It 
is noted that none of the six inhibitors is retrieved by both of 
the two virtual screening programs. This is not surprising 
due to the difference in the scoring functions of the two 
programs as shown in equations (1) and (2). Virtual screen
ing with AutoDock predicts that the two compounds (1 and 
2 in Figure 5) are the strongest binders in the active site of a- 

Figure 5. Chemical structures of the top-scored a-glucosidase inhibitors retrieved in virtual screening with AutoDock (1-5) and FlexX (6).



926 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 5 Jung-Hum Park et al.

glucosidase among the 20 known inhibitors under conside
ration, the systematic names of which are 1,5,7,9,11,14- 
hexahydroxy-3-methyl-8,13-dioxo-5,6,8,13-tetrahydro-benzo- 
[시]naphthacene-2-carboxylic acid and 4-hydroxymethyl-6- 
{[5-(5-trifluoromethyl-2H-pyrazol-3-yl)-thiophen-2-ylmethyl]- 
amino}-cyclohex-4-ene-1,2,3-tripol, respectively. It is noted 
that both inhibitors possess many hydroxyl groups, indicat
ing the involvement of multiple hydrogen bonds in their 
interactions with the active site of 止glucosidase. It is also a 
common structural feature of the two inhibitors that the polar 
groups are attached to a hydrophobic backbone. These 
hydrophobic moieties seem to be stabilized at the active site 
through the interactions with the nonpolar groups of a- 
glucosidase.

To gain more structural insight into the inhibitory mech
anism for a-glucosidase, the binding modes of 1 and 2 were 
examined using the AutoDock program with the procedure 
described in the previous section. The calculated binding 
modes of the two inhibitors in the active site of a-gluco- 
sidase are compared in Figure 6. It is seen that the 5,7- 
dihydroxy-[1,4]naphthoquinone moiety of 1 resides in close 
proximity to the catalytic residues including Asp214, 
Glu276, His348, and Asp349, indicating that it can serve as 
a surrogate for the terminal glucose with anomeric center in 
the substrate. Four hydrogen bonds are established between 
the phenolic and carbonyl oxygens of 1 and the side chains 
of Asp214, Thr215, Ser244, and Arg312. This is consistent 
with recent computational studies on the inhibition of。- 
glucosidase in which the formation of multiple hydrogen 
bonds in the active site was shown to be a significant bind
ing force.46 We also note that the tetrahydro-benzo[a]naph- 
thacene backbone of 1 forms hydrophobic contacts with the 
side chains of Tyr71, Phe157, His279, Phe300, and Phe311, 
indicating that van der Waals interactions would also play a 
significant role in stabilizing the enzyme-inhibitor complex. 
Therefore, 1 is most likely to be capable of inhibiting the 
catalytic action of a-glucosidase by a tight binding in the 
active site through the multiple hydrogen bond and hydro
phobic interactions in a cooperative fashion.

Four hydrogen bonds are also observed in the calculated 
binding mode of 2 between the hydroxyl groups of the 
inhibitor and the side chains of Asp68, His111, Asp214, and 

Arg349. Hence, the formation of multiple hydrogen bonds 
seems to play a role of anchoring the inhibitors to the 
enzymatic active site. The thiophenylpyrazole moiety of 2 is 
stabilized by hydrophobic contacts with Tyr71, Phe157, 
His279, Phe300, Thr307, Phe311, and Arg312 in a stronger 
way than the hydrophobic interactions of 1 in the active site 
of a-glucosidase. On the other hand, the backbone scaffold 
of 1 has no torsional degree of freedom, indicating a sub
stantial decrease in entropic penalty for the formation of 
enzyme-inhibitor complex as compared to the other ligands 
with rotatable bonds. The entropic contribution has indeed 
been shown to be the most significant ingredient in the bind
ing free energy function.35 This affinity-enhancing factor 
reflected in 1 seems to compensate for its relatively weak 
van der Waals interactions in the active site, which can be an 
explanation for the similarity in the calculated binding free 
energies of 1 and 2.

Conclusions

As a method for the discovery of new novel inhibitors of 
a-glucosidase, we have addressed the performance of the 
computer-aided drug design protocol involving the homo
logy modeling of the target protein and the structure-based 
virtual screening with the two docking tools: FlexX and the 
automated and improved AutoDock implementing the 
effects of ligand solvation in the binding free energy func
tion. The homology modeling of a-glucosidase provides a 
high-quality 3-D structure to the extent of enabling the 
structure-based inhibitor design. Of the two docking pro
grams under consideration, AutoDock is found to be more 
accurate than FlexX in terms of scoring putative ligands 
with 5-fold enhancement of hit rate in database screening 
when 1% of database coverage is used as a cutoff. The out
performance of the improved AutoDock program in virtual 
screening of a-glucosidase inhibitors can be attributed to the 
accuracy in the scoring function in which the effects of 
ligand solvation in protein-ligand interaction are taken into 
account. It is also shown from a detailed binding mode 
analysis of the known inhibitors that their binding in the 
active site of a-glucosidase can be facilitated by the 
establishment of multiple hydrogen bonds with the side 

Figure 6. Calculated binding modes of (a) 1 and (b) 2 in the active site a-glucosidase. Carbon atoms of the protein and the ligand are indicated in 
green and cyan, respectively. Each dotted line indicates a hydrogen bond.
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chains of polar residues. Simultaneously, the hydrophobic 
interactions with the residues near the active site can also 
play a significant role in stabilizing the inhibitors in the 
active site of a-glucosidase. The present study demonstrates 
the usefulness of the automated AutoDock program with the 
improved scoring function as a docking tool for virtual 
screening of new a-glucosidase inhibitors as well as for 
binding mode analysis to elucidate the activities of known 
inhibitors.
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