DOI QR코드

DOI QR Code

Homology Modeling of Cysteinyl Leukotriene1 Receptor

  • Babu, Sathya (Department of Bioinformatics, School of Bioengineering, SRM University) ;
  • Madhavan, Thirumurthy (Department of Bioinformatics, School of Bioengineering, SRM University)
  • Received : 2015.02.03
  • Accepted : 2015.03.25
  • Published : 2015.03.30

Abstract

Cysteinyl leukotrienes are inflammatory mediators having important role in pathophysiological conditions such as asthma, allergic rhinitis and have been implicated in a number of inflammatory conditions including cardiovascular and gastrointestinal diseases. Most of the disease regulatory actions of the CysLTs are mediated through CysLT1 receptor. Hence in the present study, homology modeling of CysLT1 was performed because the availability of 3D structure would enhance the development of new drugs for inflammatory diseases. However the templates identified have low sequence identity which increases the complexity of modeling. Hence, homology modeling was performed using single template, multiple templates and also using threading I-TASSER server. The best model was selected based on the validation of the generated models using Ramachandran and ERRAT plot. The model developed could be useful for identifying crucial residues and docking study.

Keywords

References

  1. J. Theron, H. C. Steel, R. Tintinger, C. M. Gravett, R. Anderson, and C. Feldman, "Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function", Journal of Immunology Research, ID 608930, pp. 1-16, 2014
  2. Y. Kanaoka and J. A. Boyce, "Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses", J. Immunol., Vol. 173, pp. 1503-1510, 2004. https://doi.org/10.4049/jimmunol.173.3.1503
  3. M. Back, "Functional characteristics of cysteinylleukotriene receptor subtypes", Life Sci., Vol. 71, pp. 611-622, 2002. https://doi.org/10.1016/S0024-3205(02)01733-2
  4. C. Parravicini, G. Ranghino, M. P. Abbracchio, and P. Fantucci, "GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors", BMC Bioinformatics, Vol. 9, pp. 263, 2008. https://doi.org/10.1186/1471-2105-9-263
  5. A. Maekawa, B. Balestrieri, K. F. Austen, and Y. Kanaoka, "GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4", P. Natl. Acad. Sci. USA., Vol. 106, pp. 11685-11690, 2009. https://doi.org/10.1073/pnas.0905364106
  6. X. Dong, Y. Zhao, X. Huang, K. Lin, J. Chen, E. Wei, T. Liu, and Y. Hu, "Structure-based drug design using GPCR homology modeling: Toward the discovery of novel selective CysLT2 antagonists", Eur. J. Med. Chem., Vol. 62, pp. 754-763, 2013. https://doi.org/10.1016/j.ejmech.2013.01.041
  7. Y. Ogawa and J. Calhoun, "The role of leukotrienes in airway inflammation", J. Allergy Clin. Immunol., Vol. 118, pp. 789-798, 2006. https://doi.org/10.1016/j.jaci.2006.08.009
  8. C. Corrigan, K. Mallett, S. Ying, D. Roberts, A. Parikh, G. Scadding, and T. Lee, "Expression of the cysteinyl leukotriene receptors cysLT1 and cysLT2 in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis", J. Allergy Clin. Immunol., Vol. 115, pp. 316-322, 2005. https://doi.org/10.1016/j.jaci.2004.10.051
  9. G. Woszczek, R. Pawliczak, H. Y. Qi, S. Nagineni, S. Alsaaty, C. Logun, and J. H. Shelhamer, "Functional characterization of human cysteinyl leukotriene 1 receptor gene structure", J. Immunol., Vol. 175, pp. 5152-5159, 2005. https://doi.org/10.4049/jimmunol.175.8.5152
  10. Y. Hui and C. D. Funk, "Cysteinyl leukotriene receptor", Biochem. Pharmacol., Vol. 64, pp. 1549-1557, 2002. https://doi.org/10.1016/S0006-2952(02)01357-6
  11. P. Montuschi, A. Sala, S.-E. Dahlen, and G. Folco, "Pharmacological modulation of leukotriene pathway in allergic airway disease", Drug. Discov. Today, Vol. 12, pp. 404-412, 2007. https://doi.org/10.1016/j.drudis.2007.03.004
  12. H. M. Sarau, R. S. Ames, J. Chambers, C. Ellis, N. Elshourbagy, J. J. Foley, D. B. Schmidt, R. M. Muccitelli, O. Jenkins, P. R. Murdock, N. C. Herrity, W. Halsey, G. Sathe, A. I. Muir, P. Nuthulaganti, G. M. Dytko, P. T. Buckley, S. Wilson, D. J. Bergsma, and D. W. P. Hay, "Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor", Mol. Pharmacol., Vol. 56, pp. 657-663, 1999. https://doi.org/10.1124/mol.56.3.657
  13. V. Capra, "Molecular and functional aspects of human cysteinyl leukotriene receptors", Pharmacol. Res., Vol. 50, pp. 1-11, 2004. https://doi.org/10.1016/j.phrs.2003.12.012
  14. J. C. Mobarec, R. Sanchez, and M. Filizola, "Modern homology modeling of G-protein coupled receptors: which structural template to use?", J. Med. Chem., Vol. 52, pp. 5207-5216, 2009. https://doi.org/10.1021/jm9005252
  15. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool", J. Mol. Biol., Vol. 215, pp. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2
  16. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, "The protein data bank", Nucleic Acids Res., Vol. 28, pp. 235-242, 2000. https://doi.org/10.1093/nar/28.1.235
  17. J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the sensitivity of progressive sequence weighting, position-specific gap penalties and weight matrix choice", Nucleic Acids Res., Vol. 22, pp. 4673-4680, 1994. https://doi.org/10.1093/nar/22.22.4673
  18. B. K. Kuntal, P. Aparoy, and P. Reddanna, "Easy-Modeller: A graphical interface to MODELLER", BMC Research Notes, Vol. 3, pp. 226, 2010. https://doi.org/10.1186/1756-0500-3-226
  19. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, and A. Sali, "Comparative protein structure modeling with MODELLER", Current Protocols in Bioinformatics, Vol. 5, pp. 1-5, 2006.
  20. Y. Zhang, "I-TASSER server for protein 3D structure prediction", BMC Bioinformatics, Vol. 9, pp. 1-8, 2008. https://doi.org/10.1186/1471-2105-9-1
  21. S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by $C{\alpha}$ geometry: ${\phi}$, ${\psi}$ and $C{\beta}$ deviation", Proteins., Vol. 50, pp. 437-450, 2003. https://doi.org/10.1002/prot.10286
  22. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of non-bonded atomic interactions", Protein Sci., Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916

Cited by

  1. Structure Prediction of KiSS1-derived Peptide Receptor Using Comparative Modelling vol.9, pp.2, 2016, https://doi.org/10.13160/ricns.2016.9.2.136
  2. Protein Phosphatase 1D (PPM1D) Structure Prediction Using Homology Modeling vol.9, pp.1, 2016, https://doi.org/10.13160/ricns.2016.9.1.35
  3. Docking Study of Cysteinyl Leukotriene 1 Receptor: Therapeutic Target for Allergy vol.9, pp.4, 2016, https://doi.org/10.13160/ricns.2016.9.4.228
  4. Theoretical Structure Prediction of Bradykinin Receptor B2 Using Comparative Modeling vol.9, pp.4, 2016, https://doi.org/10.13160/ricns.2016.9.4.234
  5. Three Dimensional Structure Prediction of Neuromedin U Receptor 1 Using Homology Modelling vol.10, pp.1, 2015, https://doi.org/10.13160/ricns.2017.10.1.7
  6. Theoretical Protein Structure Prediction of Glucagon-like Peptide 2 Receptor Using Homology Modelling vol.10, pp.3, 2015, https://doi.org/10.13160/ricns.2017.10.3.119