DOI QR코드

DOI QR Code

3D Structure of Bacillus halodurans O-Methyltransferase, a Novel Bacterial O-Methyltransferase by Comparative Homology Modeling

  • Lee, Jee-Young (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Sung-Ah (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2007.06.20

Abstract

Bacillus halodurans O-methyltransferase (BhOMT) is a S-adenosylmethionine (SAM or AdoMet) dependent methyltransferase. Three dimensional structure of the BhOMT bound to S-adenosyl-L-homocysteine (SAH or AdoHcy) has been determined by comparative homology modeling. BhOMT has 40% sequence identity with caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) from alfalfa. Based on x-ray structure of CCoAOMT, three dimensional structure of BhOMT was determined using MODELLER. The substrate binding sites of these two proteins showed slight differences, but these differences were important to characterize the substrate of BhOMT. Automated docking study showed that four flavonoids, quercetin, fisetin, myricetin, and luteolin which have two hydroxyl groups simultaneously at 3'- and 4'-position in the B-ring and structural rigidity of Cring resulting from the double bond characters between C2 and C3, were well docked as ligands of BhOMT. These flavonoids form stable hydrogen bondings with K211, R170, and hydroxyl group at 3'-position in the Bring has stable electrostatic interaction with Ca2+ ion in BhOMT. This study will be helpful to understand the biochemical function of BhOMT as an O-methyltransferase for flavonoids.

Keywords

References

  1. John, T. B.; Rene, L. J.; Lori, M. S.; Margaret, E. B. Acta Biochim. Polonica 2004, 51, 405
  2. Marti, S.; Roca, M.; Andres, J.; Moliner, V.; Silla, E.; Tunon, I.; Bertran, J. Chem. Soc. Rev. 2004, 33, 98 https://doi.org/10.1039/b301875j
  3. Creveling, C. R. Methyltransferases; John Wiley & Sons Ltd.: 2001
  4. Jennifer, L. M.; Fiona, M. M. Curr. Opin. Struc. Biol. 2002, 12, 783 https://doi.org/10.1016/S0959-440X(02)00391-3
  5. Richard, M. W.; Diane, M. O.; Carol, L. S. Annu. Rev. Pharmaco. Toxico. 1999, 39, 19 https://doi.org/10.1146/annurev.pharmtox.39.1.19
  6. Lee, Y. J.; Kim, B. G.; Ahn, J. H. J. Microbiol. Biotechnol. 2006, 4, 619
  7. Lee, Y. J.; Kim, B. G.; Park, Y.; Lim, Y.; Hur, H. G.; Ahn, J. H. J. Microbiol. Biotechnol. 2006, 7, 1090
  8. Tachaapaikoon, C.; Lee, Y. S.; Khanok, R.; Surspong, P.; Khin, L. K.; Rho, M. S.; Lee, S. K. J. Microbiol. Biotechnol. 2006, 4, 613
  9. Hideto, T.; Kaoru, N.; Yoshihiro, T.; Go, M.; Rumie, S.; Noriaki, M.; Fumie, F.; Chie, H.; Yuka, N.; Naotake, O.; Satoru, K.; Koki, H. Neucleic Acids Res. 2000, 28, 4317 https://doi.org/10.1093/nar/28.21.4317
  10. Jean-Luc, F.; Chloe, Z.; Richard, A. D.; Joseph, P. N. Plant Physiology 2005, 137, 1009 https://doi.org/10.1104/pp.104.048751
  11. Zheng-Hua, Y.; Ruiqin, Z.; Herbert, M.; David, S. H. Phytochemistry 2001, 57, 1177
  12. Narayana, K. R.; Reddy, M. S.; Chaluvadi, M. R.; Krishna, D. R. Ind. J. Pharma. 2001, 33, 2
  13. Wilkins, M. R.; Gasteiger, E.; Bairoch, A.; Sanchez, J. C.; Williams, K. L.; Appel, R. D.; Hochstrasser, D. F. Methods Mol. Biol. 1999, 112, 531
  14. Marti-Renom, M. A.; Stuart, A.; Fiser, A.; Sánchez, R.; Melo, F.; Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291
  15. Lee, J. Y.; Kim, Y. Bull. Korean Chem. Soc. 2005, 26, 1695 https://doi.org/10.5012/bkcs.2005.26.11.1695
  16. Lee, J. Y.; Baek, S.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 379 https://doi.org/10.5012/bkcs.2007.28.3.379
  17. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 283 https://doi.org/10.1107/S0021889892009944
  18. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Computational Chemistry 1998, 19, 1639 https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  19. Ko, H.; Shim, G.; Kim, Y. Bull. Korean Chem. Soc. 2005, 26, 2001 https://doi.org/10.5012/bkcs.2005.26.12.2001
  20. Morris, A. L.; MacArthur, M. W.; Hutchinson, E. G.; Thornton, J. M. Proteins 1992, 12, 345 https://doi.org/10.1002/prot.340120407
  21. Pal, D.; Chakrabarti, P. Biopolymers 2002, 63, 195 https://doi.org/10.1002/bip.10051
  22. Pedro, G.; Rubens, L.; José, L. G. Microbial Drug Resistance 2003, 9, 7 https://doi.org/10.1089/107662903764736292
  23. Yoon, Y.; Yi, Y. S.; Lee, Y.; Kim, S.; Kim, B. G.; Ahn, J. H.; Lim, Y. Biochim. Biophys. Acta 2005, 1730, 85 https://doi.org/10.1016/j.bbaexp.2005.06.005

Cited by

  1. Epigallocatechin 3-gallate Binds to Human Salivary α-Amylase with Complex Hydrogen Bonding Interactions vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2222
  2. Sequence analysis, in silico modeling and docking studies of Caffeoyl CoA-O-methyltransferase of Populus trichopora vol.16, pp.9, 2010, https://doi.org/10.1007/s00894-010-0656-1
  3. Molecular Modeling and Site Directed Mutagenesis of the O-Methyltransferase, SOMT-9 Reveal Amino Acids Important for Its Reaction and Regioselectivity vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2248
  4. Cell Selectivity of Arenicin-1 and Its Derivative with Two Disulfide Bonds vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1190
  5. Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase vol.29, pp.7, 2007, https://doi.org/10.5012/bkcs.2008.29.7.1311
  6. Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1479
  7. Inhibitor Design for Human Heat Shock Protein 70 ATPase Domain by Pharmacophore-based in silico Screening vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1717