• Title/Summary/Keyword: Homogeneous Grain

Search Result 162, Processing Time 0.025 seconds

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Effects of artificial holes in very large single-grain Y1.5Ba2Cu3O7-y bulk superconductors

  • Park, S.D.;Park, H.W.;Jun, B.H.;Kim, CJ.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.27-32
    • /
    • 2017
  • The effects of artificial holes on the trapped magnetic fields and magnetic levitation forces of very large single-grain $Y_{1.5}Ba_2Cu_3O_{7-y}$ (Y1.5) bulk superconductors were studied. Artificial holes were made for Y1.5 powder compacts by die pressing using cylindrical dies with a diameter of 30 mm or 40 m, or rectangular dies with a side length of 50 mm. The single grain Y1.5 bulk superconductors (25 mm, 33 mm in diameter and 42 mm in side length) with artificial holes were fabricated using a top-seeded melt growth (TSMG) process for the die-pressed Y1.5 powder compacts. The magnetic levitation forces at 77 K of the 25 mm single grain Y1.5 samples with one (diameters of 4.2 mm) or six artificial holes (diameters of 2.5 mm) were 10-17% higher than that of the Y1.5 sample without artificial holes. The trapped magnetic fields at 77 K of the Y1.5 samples with artificial holes were also 9.6-18% higher than that of the Y1.5 sample without artificial holes. The 33 mm and 42 mm single grain Y1.5 samples with artificial holes (2.5 mm and 4.2 mm in diameter) also showed trapped magnetic fields 10-13% higher than that of the Y1.5 samples without artificial holes in spite of the reduced superconducting volume fraction due to the presence of artificial holes. The property enhancement in the large single grain Y1.5 bulk superconductors appears to be attributed to the formation of the pore-free regions near the artificial holes and the homogeneous oxygen distribution in the large Y123 grains.

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

Sintering Behavior of Al2O3-15v/o ZrO2(+3m/o Y2O3) Ceramics Prepared by Precipitation Method (침전법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 세라믹스의 소결거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.423-437
    • /
    • 1989
  • Al2O3/ZrO2 composites were prepared by precipitation method using Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O as starting materials and NH4OH as a precipitation agent. Al2O3/ZrO2 composites(series A) were prepared by mixing Al2O3 powder obtained by single precipitation method with ZrO2(+3m/o Y2O3) powder obtained by co-predipitation method. Al2O3/ZrO2 composites (series B) were prepared by co-precipitation method using the three starting materials. In all cases, the composition was controlled as Al2O3-15v/o ZrO2(+3m/o Y2O3). The composites of series A showed higher final relative densities than those of series B and tetagonal ZrO2 in all cases was retained to about 95% at room temperature. ZrO2 particles were coalesced more rapidly in grain boundary of Al2O3 than within Al2O3 grain. ZrO2 particles were located at 3-and 4-grain junction of Al2O3 and limited the grain growth of Al2O3. It was observed that MgO contributed to densification of Al2O3 but limited grain growth of Al2O3 by MgO was not remarkable. In all Al2O3/ZrO2 composites, exaggerated grain growth of Al2O3 was not observed and Al2O3/ZrO2 composites were found to have homogeneous microstructures.

  • PDF

Analysis of microstructure and texture evolution in AZ31Mg alloy fabricated by direct/indirect extrusion process (직/간접 압출공정에 의해 제조된 AZ31Mg 합금의 미세조직 및 집합조직 변화 분석)

  • Kim, D.H.;You, B.S.;Park, S.S.;Yoon, D.J.;Choi, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.38-41
    • /
    • 2008
  • To investigate the evolution of microstructure and texture in AZ31 Mg alloy, direct/indirect extrusion process was carried out at $300^{\circ}C$ with various extrusion speeds. The distribution of grain size depends on extrusion method and extrusion speed. More homogeneous grain site can be obtained at higher extrusion speed of indirect extrusion process. Extrusion speed does not affect significantly texture evolution during extrusion process regardless of extrusion method. ODF section is more useful to understand texture evolution during extrusion process compared with pole figure.

  • PDF

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kwak, Eun-Jeong;Kim, Taek-Soo;Hong, Sun-Ig;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.360-363
    • /
    • 2007
  • Microstructure and microhardness of metallic powders of pure copper were studied after high pressure torsion(HPT) processing with 10 turns of die rotation and high pressure of 6 GPa. The grain size of copper decreases drastically after HPT and reaches nanometer size ranges. During HPT, the hardness of consolidates of copper powders increases with increasing the temperature of HPT processing. Examinations of the fracture surfaces indicated evidence of ductile fracture. The results proved that HPT of copper powders has a beneficial effect for homogeneous deformation with reducing grain size.

Fabrication of Mn-Zn Ferrite by Hot Petroleum Drying Method (석유증발 건조방법에 의한 Mn-Zn Ferrite의 제조에 관한 연구)

  • 변수일
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 1979
  • This study attempted to characterize the powder and sintered specimen of Mn-Zn ferrite that was prepared by Hot Petroleum Drying Method. The results of the experiment were as follows: 1. The mixed sulfate powder prepared by Hot Petroleum Drying Method was homogeneous and very reactive. The ferrite formation of this powder occurred at lower temperature than the one prepared by Sulfate Dry Mixing Method. 2. The calcined oxide powder prepared by Hot Petroleum Drying Method was found to be agglomerated, and therefore it was very difficult to compact this powder. 3. The sintered density was 4.95g/㎤, 97% of the theoretical density, when the specimen was prepared by Hot Petroleum Drying method, calcined at 90$0^{\circ}C$ in air for 3h, sintered at 1,30$0^{\circ}C$ in air for 3h, and then cooled in nitrogen. 4. The discontinuous grain growth occurred at lower temperature in the specimen prepared by Hot Petroleum Dyring Method than in the one prepared by Sulfate Dry Mixing Method. The discontinuous grain growth was considered to be due to the presence of liquid formed by addition of CaO and $SiO_2$.

  • PDF

Effect of Grain Growth Inhibitor on Sintering of Nanophase WC-10wt%Co (초미립 WC-l0wt%Co 초경 분말의 소결시 입자 성장 억제제 첨가 효과 연구)

  • 김병기
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.208-216
    • /
    • 1994
  • A radically new approach to the in situ synthesis of the consituent phases of a composite structure has enabled the production of a new WC/Co materials with an ultrafine microstructure. The process for synthesizing nanophase WC/Co powders consists of spray drying from solution to form a homogeneous precursor powder, and thermochemical conversion of the precursor powder to the nanophase WC/Co powder. Near theoretical density of pure nanophase WC-10 wt%Co has been obtained in only 30 sec at 140$0^{\circ}C$. But WC particles were grown up very rapidly with longer sintering time to get full density. To overcome coarsening of WC particle during sintering, VC, TaC and VC/TaC were used as the grain growth inhibitor with different amount respectively. VC/TaC doped WC-10 wt%Co was shown superior hardness and TRS and microstructure was maintained ultrafine scale (average WC size is less than 0.1 ${\mu}{\textrm}{m}$).

  • PDF

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan;Choi, Eui-Seok;Hayakawa, Motozo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.718-721
    • /
    • 2005
  • The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

Microstructural Properties of PZT Heterolayered Thin Films Prepared by Sol-Gel Method (솔-젤법으로 제작한 PZT 이종층 박막의 구조적 특성)

  • 이성갑;김경태;정장호;박인길;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.311-314
    • /
    • 1999
  • Ferroelectric PZT heterolayered thin films were fabricated by spin coating method on the Pt/Ti/SiO$_2$/Si substrate using PZT(10/90) and PZT(90/10) metal alkoxide solutions. All PZT heterolayered films showed a homogeneous grain structure without presence of the rosette structure. It can be assumed that the lower PZT layers a role of nucleation site or seeding layer for the formation of the upper PZT layer. Zr and Ti diffusion into the Pt electrode were mainly distributed at the surface of Pt electrode beneath the PZT/Pt interface. The PZT/Pt interfacial layer showed a microstructure characterized by a grain phase surrounded by a Pb-deficient pyrochlore matrix phase. The relative dielectric constant and the dielectric loss of the PZT-6 film were 567 and 3.6, respectively.

  • PDF