DOI QR코드

DOI QR Code

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing

금속분말의 고압비틀림 성형시 나노결정화

  • 윤승채 (충남대학교 대학원 나노공학부) ;
  • 곽은정 (충남대학교 대학원 나노공학부) ;
  • 김택수 (한국생산기술연구원) ;
  • 홍순익 (충남대학교 나노공학부) ;
  • 김형섭 (충남대학교 나노공학부)
  • Published : 2007.08.01

Abstract

Microstructure and microhardness of metallic powders of pure copper were studied after high pressure torsion(HPT) processing with 10 turns of die rotation and high pressure of 6 GPa. The grain size of copper decreases drastically after HPT and reaches nanometer size ranges. During HPT, the hardness of consolidates of copper powders increases with increasing the temperature of HPT processing. Examinations of the fracture surfaces indicated evidence of ductile fracture. The results proved that HPT of copper powders has a beneficial effect for homogeneous deformation with reducing grain size.

Keywords

References

  1. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, 2000, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., Vol. 45, pp. 103-189 https://doi.org/10.1016/S0079-6425(99)00007-9
  2. K. L. Choy, 2000, Vapor Processing of Nanostructured Materials, Handbook of Nanostructured Materials and Nanotechnology, edited by H. S. Nalwa, Academic Press, p. 533
  3. M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, 2002, The use of severe plastic deformation for microstructural control, Mater. Sci. Eng. A, Vol. 324, pp. 82-89 https://doi.org/10.1016/S0921-5093(01)01288-6
  4. T. C. Lowe, Y. T. Zhu, 2000, Observation and issues on mechanisms of grain refinement during ECAP process, Mater. Sci. Eng. A, Vol. 291, pp. 46-53 https://doi.org/10.1016/S0921-5093(00)00978-3
  5. M. G. Glavicic, A. A. Salem, S. L. Semiatin, 2004, X-ray line broadening analysis of deformation mechanisms during rolling of commercial purity titanium, Acta Mater., Vol. 52, pp. 647-655 https://doi.org/10.1016/j.actamat.2003.10.025
  6. V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. Z. Valiev, 2001, Microstructure and properties of pure Ti processed by ECAP and cold extrusion, Mater. Sci. Eng. A, Vol. 303, pp. 82-89 https://doi.org/10.1016/S0921-5093(00)01884-0
  7. S. C. Yoon, M. H. Seo, H. S. Kim, 2006, Preform effect on the plastic deformation behavior of workpieces in equal channel angular pressing, Scripta Mater., Vol. 55, pp. 159-162 https://doi.org/10.1016/j.scriptamat.2006.03.046
  8. H. S. Kim, 2001, Prediction of temperature rise in equal channel angular pressing, Mater. Trans., Vol. 42, pp. 536-538 https://doi.org/10.2320/matertrans.42.536
  9. A. Vorhauer, R. Pippan, 2004, On the homogeneity of deformation by high pressure torsion, Scripta Mater., Vol. 51, pp. 921-925 https://doi.org/10.1016/j.scriptamat.2004.04.025
  10. J. Sort, D. C. Ile, A. P. Zhilyaev, A. Concustell, T. Czeppe, M. Stoica, S. Surinach, J. Eckert, M. D. Baro, 2004, Cold-consolidation of ball milled Febased amorphous ribbons by high pressure torsion, Scripta Mater., Vol. 50, pp. 1221-1225 https://doi.org/10.1016/j.scriptamat.2004.02.004
  11. C. Xu, Z. Horita, T. G. Langdon, 2007, The evolution of homogeneity in processing by high pressure torsion, Acta Mater., Vol. 55, pp. 203-212 https://doi.org/10.1016/j.actamat.2006.07.029
  12. T. Ungar, L. Balogh, Y. T. Zhu, Z. Horita, C. Xu, T. G. Langdon, 2007, Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high pressure torsion, Mater. Sci. Eng. A, Vol. 444, pp. 153-156 https://doi.org/10.1016/j.msea.2006.08.059