• Title/Summary/Keyword: Hoagland solution

Search Result 63, Processing Time 0.025 seconds

Effects of Abscisic Acid on Some Physiological Responses of the Leaves in Nicotiana tabacum L. (담배(Nicotiana tabacum L.) 잎의 몇가지 생리적 반응에 미치는 Abscisic Acid의 영향)

  • 김진성
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 1986
  • The plants of Nicotiana tabacum L. cv. NC2326 were germinated in 10 cm D$\times$20 cm H polyethylene pot, and sand-cultured with Hoagland solution near by the window of laboratory room(26$\pm$5$^{\circ}C$). The growing plants were sprayed with various concentrations of ABA around 9 : 00 a.m. once in every two days for 12 weeks in summer. As the results, frequency of stomatal number, stomatal opening, chlorophyll content, respiration rate, and protein content in the leaves were decreased with the increasing of concentrations of ABA, respectively. The plant growth was inhibited by exogenous ABA, but leaf abscission was not found during the experimental period. The ratio of three to one in chlorophyll a to b was not altered by exogenous ABA. All the stomata were closed within three minutes by 100 $\mu\textrm{g}$ ml-1 ABA and within seven minutes by 1-10 $\mu\textrm{g}$ ml-1 ABA after the spraying of ABA, and then reopended after a few hours in 1-10 $\mu\textrm{g}$ ml-1 ABA and after 24 hours in 100 $\mu\textrm{g}$ ml-1 ABA. The polar movement of chloroplast within the guard cells was found in the higher concentrations of 10 and 100 $\mu\textrm{g}$ ml-1 ABA, but not found in the lower concentrations than 1 $\mu\textrm{g}$ ml-1 ABA. During the night and weak light, it was fond that the inhibition of respiration rate by the higher concentration of ABA was owing to firstly the stomatal closure by the spraying of ABA and secondly the decrease of stomatal frequency by the inhibition of stomatal development with exogenous ABA for the long period of 12 weeks. In the band number of leaf protein by the electrophoresis, most of the protein bands were disappeared by the higher concentration of 100 $\mu\textrm{g}$ ml-1 ABA, but were not altered by the lower concentration of ABA in comparison with control.

  • PDF

Mineral Uptake and Soluble Carbohydrates of Tomato Plants as Affected by Air Temperatures and Mineral Treatment Levels

  • Sung, Jwakyung;Yun, Hejin;Cho, Minji;Lee, Yejin;Chun, Hyenchung;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.305-311
    • /
    • 2015
  • Both low and high temperatures affect plant growth and development at whole plant level, tissue and even cell level through a variety of metabolic changes. Temperature stress is one of frequently occurring problems in greenhouse crops in summer and winter seasons due to the wide-spread year-round cultivation. In the present study, we investigated the extent of the inhibition of growth, macro-element uptake and soluble carbohydrate production, and the effect of extra-supply of minerals as a means of the recovery from temperature damage. Tomato plants were grown five different growth temperatures (15/8, 20/13, 28/21, 33/23 and $36/26^{\circ}C$), and extra-supply of minerals was composed of 1.5- and 2.0-fold stronger than the standard nutrition (1/2 strength of Hoagland's solution). Temperature stress significantly adversely affected tomato growth and mineral uptake, whereas soluble carbohydrate accumulation represented temperature-dependent response, more accumulation at low temperature and more consumption at high temperature. The soluble sugars in leaves and stems were mostly declined with the supply of extra-minerals at low and optimal temperatures, whereas remained unchanged at high temperature. The starch levels also remained unchanged or slightly decreased.

Lowered Substrate pH Reduced the Bicarbonate Injury during Vegetative Growth of 'Ssanta' Strawberry (혼합상토의 pH 저하가 영양생장 중인 '싼타' 딸기의 중탄산 피해 경감에 미치는 영향)

  • Lee, Hee Su;Cheung, Jong Do;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • Objective of this research was to investigate the influence of lowered substrate pH on the reduction of bicarbonate injury in the vegetative growth of 'Ssanta' strawberry. The acid substrate was formulated by mixing sphagnum peat moss with pine bark (5:5, v/v) and the pH, EC, and CEC of the substrate were 4.07, $0.46dS{\cdot}m^{-1}$, and $91.3cmol^+{\cdot}kg^{-1}$, respectively. To adjust the pH of acid substrate, various amount of dolomitic lime [$CaMg(CO_3)_2$] were incorporated with the rate of 0 (untreated), 1, 2, 3, and $4g{\cdot}L^{-1}$. Then, mother plants were transplanted and grown with fertilizer solution containing $240mg{\cdot}L^{-1}$ of the $HCO_3{^-}$ and equal concentrations of essential nutrients to Hoagland solution. In growth of 'Ssanta' strawberry, fresh weight of mother plants were the highest in the treatment of $2g{\cdot}L^{-1}$ dolomitic lime such as 102.1 g followed by 94.7 g in $1g{\cdot}L^{-1}$, 91.2 g in $3g{\cdot}L^{-1}$, 75.7 g in $0g{\cdot}L^{-1}$ and 72.3 g in $4g{\cdot}L^{-1}$ treatments. The dry weight showed a similar tendency to fresh weight. At 140 days after transplanting, 5.8, 9.8, 11.8, 8.8, and 5.0 daughter plants were derived from each of the mother plants in the treatments of 0, 1, 2, 3, and $4g{\cdot}L^{-1}$ dolomitic lime, respectively. The highest occurrence of daughter plants were observed in the treatments $2g{\cdot}L^{-1}$ dolomitic lime. The substrate pH and bicarbonate concentration of 'Ssanta' strawberry seedlings in the 1 and $2g{\cdot}L^{-1}$ dolomitic lime treatments were maintained at a proper range such as 5.6 to 6.2. The micro-nutrient contents of above ground tissue in mother plants were the highest in $2g{\cdot}L^{-1}$ and the lowest in $4g{\cdot}L^{-1}$ dolomitic lime treatment. The above results indicate that incorporation rate of dolomitic lime in acid substrate with the pH of around 4 is $2g{\cdot}L^{-1}$ to raise the 'Ssanta' strawberry in propagation.

Influence of Application Rates of Dolomitic Lime in the Acid Substrate on the Reduction of Bicarbonate Injury during Vegetative Growth of the 'Seolhyang' Strawberry (산성 혼합상토의 고토석회 시비수준이 영양생장 중인 '설향' 딸기의 중탄산 피해 경감에 미치는 영향)

  • Lee, Hee Su;Choi, Jong Myung;Kim, Dae Young;Kim, Seung Yu
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.220-227
    • /
    • 2016
  • The objective of this research was to investigate the influence of application rates of dolomitic lime in the acid substrate on the mitigation of high bicarbonate damage in 'Seolhyang' strawberry. For this purpose, an acid substrate was formulated by mixing of sphagnum peat moss and pine bark with the ratio of 5:5 (v/v). The pH, EC and CEC of the substrate analyzed before application of dolomite were 4.07, $0.46dS{\cdot}m^{-1}$, and $91.3cmol+/kg^{-1}$, respectively. To adjust the pH of substrate, various amounts of dolomitic lime [$CaMg(CO_3)_2$] such as 0 (control), 1, 2, 3, and $4g{\cdot}L^{-1}$ were added during substrate formulation. Then, seedlings with 3 leaf stage were transplanted as mother plants and those were fed with Hoagland solution containing $240mg{\cdot}L^{-1}$ of the $HCO_3{^-}$. The growth parameters of mother plants 140 days after transplanting, such as plant height, chlorophyll content, and fresh weight were the highest in the treatments of 2 and $3g{\cdot}L^{-1}$ of dolomitic lime. The physiological disorders in mother plants were not observed in the 1, 2 and $3g{\cdot}L^{-1}$ treatments, but the symptoms of Ca, K and B deficiencies were observed in the 0 and $4g{\cdot}L^{-1}$ treatments. During the propagation period, the number of daughter plants derived from each mother plant were 21.0, 29.5, 35.8, 27.3 and 16.0 in the treatments of 0, 1, 2, 3 and $4g{\cdot}L^{-1}$, respectively. The substrate pH during cultivation of mother plants were maintained at appropriate levels for the 1 and $2g{\cdot}L^{-1}$ treatments, whereas it was the highest in $4g{\cdot}L^{-1}$ treatment. The contents of macro- and micro-elements in the above ground tissue were the highest in $2g{\cdot}L^{-1}$ and the lowest in $4g{\cdot}L^{-1}$ lime treatments. Above results suggest that the bicarbonate injury originated from ground water can be mitigated by adjusting the amount of dolomitic lime incorporated into the acid substrate.

Uptake and Transformation of RDX by Perennial Plants in Poaceae Family (Amur Silver Grass and Reed Canary Grass) under Hydroponic Culture Conditions (수경재배조건에서 다년생 벼과식물(물억새 및 갈풀)에 의한 RDX 흡수 및 분해)

  • Park, Jieun;Bae, Bumhan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.237-245
    • /
    • 2014
  • Amur silver grass (Miscanthus sacchariflorus) and reed canary grass (Phalaris arundinacea) were selected for RDX removal experiments in hydroponic culture conditions based on vegetation survey at three shooting ranges in northern Kyunggi province. Seedling of two plants were grown in 1/4 strength Hoagland solution in quadruplicates containing 10, 20, 30, 40 mg/L RDX for 15 days along with control and blank treatments. During the 15 days of incubation, pH and RDX concentration in medium were routinely analyzed and RDX contents in the shoot and the root were determined after solvent extraction at the end of the experiments. Both plant species showed no symptoms of RDX phyto-toxicity. The pseudo first order RDX-removal constants for amur silver grass and reed canary grass were in the range of $0.0143{\sim}0.0484day^{-1}$ and $0.0971{\sim}0.1853^{-1}$, respectively. Plant biomass normalized RDX removal rates, which decreased with the increase of initial RDX concentration, were in the range of $0.27{\sim}1.01mL{\cdot}g^{-1}day^{-1}$ and $0.87{\sim}1.66mL{\cdot}g^{-1}day^{-1}$ for amur silver grass and reed canary grass, respectively. After 15 days of treatment, RDX removal from the medium decreased from 49.0% to 23.7% with increase in the initial RDX concentration in amur silver grass and 7.3% of the initial RDX remained in the plant. In reed canary grass planted medium, less than 16.8% and 5% of the initial RDX remained in the medium and in the plant, respectively. Large quantities of unidentified polar compound, which was not detected in amur silver grass, accumulated in the root and shoot of reed silver grass.

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • Kim, Jin-A;Choo, Yeon-Sik;Lee, In-Jung;Bae, Jeong-Jin;Kim, In-Sook;Choo, Bo-Hye;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.171-177
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through ionic balances and osmoregulations under different environmental salt gradients. Plants were harvested in two weeks from treatments with salt gradients(0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, l/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated salts into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var cicla. The absorption of inorganic $Ca^{2+}$ ions was inhibited remarkably due to the excess uptake of $Na^+$ with increasing salinity. The $K^+$ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increases. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were $0.2{\sim}2.5{\mu}M/g$ plant water and $0.1{\sim}0.6{\mu}M/g$ plant water, respectively.

Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor (지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정)

  • Kim, Hyun-Gu;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Pot experiments using sand culture were conducted in 2004 under greenhouse conditions to evaluate the effect of nitrogen deficiency on red pepper biomass. Nitrogen stress was imposed by implementing 6 levels (40% to 140%) of N in Hoagland's nutrient solution for red pepper. Canopy reflectance measurements were made with hand held spectral sensors including $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$, and $Field\;Scout^{TM}$ Chlorophyll meter, and a spectroradiometer as well as Minolta SPAD-502 chlorophyll meter. Canopy reflectance and dry weight of red pepper were measured at five growth stages, the 30th, 40th, 50th, 80th and 120th day after planting(DAT). Dry weight of red pepper affected by nitrogen stress showed large differences between maximum and minimum values at the 120th DAT ranged from 48.2 to $196.6g\;plant^{-1}$, respectively. Several reflectance indices obtained from $GreenSeeker^{TM}$, $Crop\;Circle^{TM}$ and Spectroradiometer including chlorophyll readings were compared for evaluation of red pepper biomass. The reflectance indices such as rNDVI, aNDVI and gNDVI by the $Crop\;Circle^{TM}$ sensor showed the highest correlation coefficient with dry weight of red pepper at the 40th, 50th, and 80th DAT, respectively. Also these reflectance indices at the same growth station was closely correlated with dry weight, yield, and nitrogen uptake of red pepper at the 120th DAT, especially showing the best correlation coefficient at the 80th DAT. From these result, the aNDVI at the 80th DAT can significantly explain for dry weight of red pepper at the 120th DAT as well as for application level of nitrogen fertilizer. Consequently ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season nitrogen management for red pepper providing both spatial and temporal information.

Evaluation of Biomass and Nitrogen Nutrition of Tobacco under Sand Culture by Reflectance Indices of Ground-based Remote Sensors (지상원격측정 센서의 반사율 지표를 활용한 사경재배 연초의 생체량 및 질소영양 평가)

  • Kang, Seong-Soo;Jeong, Hyun-Cheol;Jeon, Sang-Ho;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.70-78
    • /
    • 2009
  • Remote sensing technique in agriculture can be used to identify chlorophyll content, biomass, and yield caused from N stress level. This study was conducted to evaluate biomass, N stress levels, and yield of tobacco (Nicotiana tabacum L.) under sand culture in a plastic film house using ground-based remote sensors. Nitrogen rates applied were 40, 60, 80, 100, 120, and 140 percent of N concentration in the Hoagland's nutrient solution. Sensor readings for reflectance indices were taken at 30, 35, 40, 45, 50 and 60 days after transplanting(DAT). Reflectance indices measured at 40th DAT were highly correlated with dry weight(DW) of tobacco leaves and N uptake by leaves. Especially, green normalized difference vegetation index(gNDVI) from spectroradiometer and aNDVI from Crop Circle passive sensor were able to explain 85% and 84% of DW variability and 85% and 92% of N uptake variability, respectively. All the reflectance indices measured at each sampling date during the growing season were significantly correlated with tobacco yield. Especially the gNDVI derived from spectroradiometer readings at the 40th DAT explained 72% of yield variability. N rates of tobacco were distinguished by sufficiency index calculated using the ratio of reflectance indices of stress to optimum plot of N treatment. Consequently results indicate that the reflectance indices by ground-based remote sensor can be used to predict tobacco yield and recommend the optimum application rate of N fertilizer for top dressing of tobacco.

Screening of saline tolerant plants and development of biological monitoring technique for saline stress. II. Responses of emergence and early growth of several crop species to saline stress. (내염성 식물의 탐색 및 생물학적 염해 모니터링 기술의 개발 II.염분 스트레스에 대한 작물의 출현과 초기 생장 반응)

  • Shim, Sang-In;Lee, Sang-Gak;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.122-126
    • /
    • 1998
  • This experiment was conducted to verify the responses of major crop species to saline stress.To determine the saline tolerance of crop species, sevral crop species were cultivated under sand-culture system using Hoagland's nutrient solution whit 200mM NaCl. The crop species showing saline tolerance were cotton(Gossypium indicum), maize(Zea mays), barely(Hordeum vulgare), and wheat(Triticum aestivum) but perilla (Perilla frutescens) and leguminous crops, mung bean(Phaseolus radiatus), azuki bean(Phaseolus angularis) and soy bean(Glycin max) showed very por tolerance. One the typical symptom was the darkening of leaf color due to increase of chlorophyll concentration.Among of the plant families, Fabaceae was the most susceptible but crop species belonging to Poaceae were more proper for cultivating on reclaimed tidal land in the course of desalinazation. It was suggrsted that the crop species belonging to Fabaceae, a sensitive family to soil salinity, must be cultivated when the soil salinity decreased below 10ds/m. To know the critical salinity level for crop growth,salinity of saline soil collected from reclaimed tidal land was adjusted from 10.0ds/m tp41.7ds/m with tap water. It was suggested that the ECs of the soil in which the plant height of each crop spicies was reduced to 50% of control plant were 22.6 and 21.7 ds/m in rice, barley, corn, mung bean, and soy bean,respectively.

  • PDF

The Effect of 4Ca^{2+}$ on $Cd^{2+}$ -induced Physiological Toxicity in Commelina communis L.

  • Lee, Sun-Hwa;Lee, Joon-Sang
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.303-308
    • /
    • 2002
  • 3-weeks old Commelina was transferred to and grown in Hoagland solution ($\pm$ 100 $\mu{M}$ $Cd^{2+}$, 100 $\mu{M}$ $Cd^{2+}$ + 100$\mu{M}$ $Ca^{2+}$, 100 $\mu{M}$ $Cd^{2+}$ + 200 $\mu{M}$ EGTA) for two weeks and then a number of physiological activities was investigated. $Cd^{2+}$ reduced total chlorophyll content up to 29% at a week and 75% at two weeks. In the treatment of $Cd^{2+}$$Ca^{2+}$, the total chlorophyll content was reduced to 29% at a week and 80% at two weeks. $Cd^{2+}$ reduced 24% of Fv/Fm after two weeks. In case of $Cd^{2+}$$Ca^{2+}$, Fv/Fm was reduced 55% at a week, but after two weeks, the plants were almost dead and Fv/Fm could not be measured. When EGTA was treated with $Cd^{2+}$, the value of Fv/Fm was not affected. There were no differences of water potential between the control and the treatment of $Cd^{2+}$+EGTA toy a week, but in other treatments. water potential was reduced. $Cd^{2+}$ reduced about 21% of water potential and $Cd^{2+}$$Ca^{2+}$ reduced 43% of water potential after two weeks. $Cd^{2+}$ inhibited 21% of photosynthetic activity at a week and 32% at two weeks. In case of photosynthetic activity, $Cd^{2+}$$Ca^{2+}$ inhibited 58% at a week and 73% at two weeks. $Cd^{2+}$+EGTA inhibited 15% of photosynthetic activity at a week and 21% at two weeks. Similar results were found in stomatal conductance. From the above results, it was observed that the treatment of $Ca^{2+}$ with $Cd^{2+}$ induced more reduction of a series of physiological responses than those of the treatment of $Cd^{2+}$ alone. Therefore, it could be concluded that $Ca^{2+}$ did not reduce the toxicity of $Cd^{2+}$, but enhanced $Cd^{2+}$ -induced physiological toxicities, but EGTA induced an decrease of $Cd^{2+}$ -induced physiological toxicities.