• Title/Summary/Keyword: Hip prosthesis

Search Result 49, Processing Time 0.02 seconds

Comparison of Biomechanical Stability of Custom-made Hip Implants using Finite Element Analysis (스템 길이에 따른 환자맞춤 인공고관절의 역학적 안정성 비교)

  • Jun, Yongtae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.426-432
    • /
    • 2016
  • Designing a morphologically well-fitted hip implant to a patient anatomy is desirable to improve surgical outcomes since a commercial ready-made hip implant may not well conform to the patient joint. In this study, biomechanical stability of patient-specific hip implants with two different stem lengths was compared and discussed using a 3D finite element analysis (FEA). The FEA results in this study showed that an increase in stem length brings about more the peaked von-Mises stress (PVMS) in the prosthesis and less in the femur. However the decrease in von-Mises stress in the femur causes stress shielding phenomenon that usually leads to considerable bone resorption. Although, in biomechanical stability point of view, this work recommends the use of smaller stems, the length of stem must be determined by considering both the von-Mises stress and the stress-shielding phenomenon.

Dual Mobility Cup for Revision of Dislocation of a Hip Prosthesis in a Dog with Chronic Hip Dislocation

  • Jaemin Jeong;Haebeom Lee
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.390-394
    • /
    • 2022
  • A 6-year-old, 36.5 kg castrated male Golden Retriever presented for revision surgery for left total hip replacement. The patient underwent removal of the cup and head implants due to unmanageable prosthetic hip dislocation, despite revision surgery. On physical examination, the dog showed persistent weight-bearing lameness after exercise of the left hindlimb with mild muscle atrophy. Radiographic examination revealed dorsolateral displacement of the femur with a remnant stem and bony proliferation around the cranial and caudal acetabulum rims. The surgical plan was to apply the dual mobility cup to increase the range of motion and jump distance to correct soft tissue elongation and laxity caused by a prolonged period of craniodorsal dislocation of the femur. The preparation of the acetabulum for cup fixation was performed with a 29-mm reamer, and the 29.5-mm outer shell was fixed with five 2.4-mm cortical screws. The head and medium neck of the dual-mobility system were placed on the cup, and the hip joint was reduced between the neck and stem. The dog exhibited slight weight bearing on a controlled leash walk the day after surgery. The patient was discharged 2 weeks postoperatively without any complications. Six months postoperatively, osseointegration and a well-positioned cup implant were observed, and the dog showed excellent limb function without hip dislocation until 18 months of phone call follow-up.

Recent updates for biomaterials used in total hip arthroplasty

  • Hu, Chang Yong;Yoon, Taek-Rim
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.259-270
    • /
    • 2018
  • Background: Total hip arthroplasty (THA) is probably one of the most successful surgical interventions performed in medicine. Through the revolution of hip arthroplasty by principles of low friction arthroplasty was introduced by Sir John Charnley in 1960s. Thereafter, new bearing materials, fixation methods, and new designs has been improved. The main concern regarding failure of THA has been the biological response to particulate polyethylene debris generated by conventional metal on polyethylene bearing surfaces leading to osteolysis and aseptic loosening of the prosthesis. To resolve these problems, the materials of the modern THA were developed since then. Methods: A literature search strategy was conducted using various search terms in PUBMED. The highest quality articles that met the inclusion criteria and best answered the topics of focus of this review were selected. Key search terms included 'total hip arthroplasty', 'biomaterials', 'stainless steel', 'cobalt-chromium', 'titanium', 'polyethylene', and 'ceramic'. Results: The initial search retrieved 6921 articles. Thirty-two articles were selected and used in the review. Conclusion: This article introduces biomaterials used in THA and discusses various bearing materials in currentclinical use in THA as well as the newer biomaterials which may even further decrease wear and improve THA survivorship.

Biomechanical characteristics of the distal filling effects in cementless femoral stem (무시멘트형 대퇴스템에서 원위부 압박 정도에 따른 생체역학적 특성)

  • Park, Sang-eok;Park, Jae-Won;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.387-392
    • /
    • 2000
  • In cementless total hip replacement(THR), an initial stability of the femoral component is important to long term fixation of femoral stem. The initial stability has close relationship with the relative displacement of prosthesis and spongy bone at the proximal of femur. After implantation of the prosthesis. the surrounding bone is partially shielded from load carrying and starts to resort. Stress shielding is the cause of the loss of proximal bone. Assessing stress distribution of femur is important to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and a stair climbing. Three types of stems were studied by the finite element method to analyze the biomechanical effects of distal filling of cementless femoral stems, Three types of stems employed are a distal filling stem, a distal flexible stem, and a distal tapered stem.

  • PDF

The Study of Usefulness of Metal Artifact Reduction Algorithm and Artifacts Caused by Metallic Hip Prosthesis on PET/CT (PET/CT에서의 고관절 삽입물에 의한 인공물과 Metal Artifact Reduction Algorithm의 유용성에 대한 고찰)

  • Park, Min Soo;Ham, Jun Cheol;Cho, Yong In;Kang, Chun Goo;Park, Hoon-Hee;Lim, Han Sang;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.35-43
    • /
    • 2012
  • Purpose : PET/CT performed CT-based attenuation correction generates the beam hardening artifact by metallic implant. The attenuation correction causes over or underestimate of the area adjacent to metallic hip prosthetic material and change of $^{18}F$-FDG uptake. Also, the image quality and the diagnosability on genitourinary disease are reduced. Therefore, this study will evaluate the usefulness of MAR (Metal Artifact Reduction) algorithm method to improve the image quality on PET/CT. Materials and Methods : PET/CT was performed by fixing hip prosthesis in SPECT/PET phantom. In PET images with and Without MAR algorithm, the Bright streak, Dark streak, Metal region and Background area that appeared on CT were confirmed, and the change of each SUV (standardized uptake value) was analyzed. Also, in 15 patients who underwent total hip arthroplasty, each MAR algorithm and Without MAR algorithm and non attenuation correction was evaluated. Results : In PET image Without MAR algorithm, SUV of Bright streak region was $0.98{\pm}0.48$ g/ml; Dark streak region was $0.88{\pm}0.02$ g/ml; Metal region was $0.24{\pm}0.16$ g/ml, Background area was $0.91{\pm}0.18$ g/ml. In SUV of PET image with MAR algorithm, Bright streak region was $0.88{\pm}0.49$ g/ml, Dark streak region was $0.63{\pm}0.21$ g/ml, Metal region was $0.06{\pm}0.07$ g/ml, Background was $0.90{\pm}0.02$ g/ml. SUV generally decreased when applying MAR algorithm. In PET image Without MAR algorithm, SUVs of Bright region were higher than those measured in the Background, and it was false positive uptake. But, in PET image with MAR algorithm, SUVs of Bright region were similar to the Background, and false positive uptake disappeared. Conclusion : MAR algorithm could reduce an increase of $^{18}F$-FDG uptake due to attenuation correction in the hip surrounding tissue. However, decrease of SUV in Dark streak region should be considered in the future. Therefore, this study propose that the diagnostic accuracy can be improved in genitourinary diseases adjacent to metallic hip prosthesis, if provided PET images with and Without MAR algorithm, and non attenuation correction images at the same time.

  • PDF

Comparison of Short Curved Stems and Standard-length Single Wedged Stems for Cementless Total Hip Arthroplasty

  • Chan Young Lee;Sheng-Yu Jin;Ji Hoon Choi;Taek-Rim Yoon;Kyung-Soon Park
    • Hip & pelvis
    • /
    • v.36 no.2
    • /
    • pp.120-128
    • /
    • 2024
  • Purpose: The purpose of this study was to compare the clinical and radiographic outcomes with use of short-curved stems versus standard-length single wedged stems over a minimum follow-up period of five years. Materials and Methods: A retrospective study of primary total hip arthroplasties performed using the Fitmore® stem (127 hips, 122 patients) and the M/L taper® stem (195 hips, 187 patients) between October 2012 and June 2014 was conducted. The clinical and radiographic outcomes were obtained for evaluation over a minimum follow-up period of five years. Results: In both the Fitmore® and M/L taper® groups, the mean Harris hip score improved from 52.4 and 48.9 preoperatively to 93.3 and 94.5 at the final follow-up, respectively (P=0.980). The mean Western Ontario and McMaster Universities Osteoarthritis Index scores also improved from 73.3 and 76.8 preoperatively to 22.9 and 25.6 at the final follow-up, respectively (P=0.465). Fifteen hips (Fitmore®: 14 hips; M/L taper®: one hip, P<0.001) developed intraoperative cracks and were treated simultaneously with cerclage wiring. Radiography showed a radiolucent line in 24 hips in the Fitmore® group and 12 hips in the M/L taper® group (P=0.125). Cortical hypertrophy was detected in 29 hips (Fitmore® group: 28 hips; M/L taper® group: one hip, P<0.001). Conclusion: Similarly favorable clinical and radiographic outcomes were achieved with use of both short-curved stems and standard-length single wedged stems. However, higher cortical hypertrophy and a higher rate of femoral crack were observed with use of Fitmore® stems.

Primary Arthroplasty for Unstable and Failed Intertrochanteric Fractures: Role of Multi-Planar Trochanteric Wiring Technique

  • Javahir A. Pachore;Vikram Indrajit Shah;Sachin Upadhyay;Shrikunj Babulal Patel
    • Hip & pelvis
    • /
    • v.35 no.2
    • /
    • pp.108-121
    • /
    • 2023
  • Purpose: The primary objective of the current study is to demonstrate the trochanteric wiring technique. A secondary objective is to evaluate the clinico-radiological outcomes of use of the wiring technique during primary arthroplasty for treatment of unstable and failed intertrochanteric fractures. Materials and Methods: A prospective study including follow-up of 127 patients with unstable and failed intertrochanteric fractures who underwent primary hip arthroplasty using novel multi-planar trochanteric wiring was conducted. The average follow-up period was 17.8±4.7 months. Clinical assessment was performed using the Harris hip score (HHS). Radiographic evaluation was performed for assessment of union of the trochanter and any mechanical failure. P<0.05 was considered statistically significant. Results: At the latest follow-up, the mean HHS showed significant improvement from 79.9±1.8 (at three months) to 91.6±5.1 (P<0.05). In addition, no significant difference in the HHS was observed between male and female patients (P=0.29) and between fresh and failed intertrochanteric fractures (P=0.08). Union was achieved in all cases of fractured trochanter, except one. Wire breakage was observed in three patients. There were five cases of limb length discrepancy, three cases of lurch, and three cases of wire-related bursitis. There were no cases of dislocation or infection. Radiographs showed stable prosthesis in situ with no evidence of subsidence. Conclusion: Use of the proposed wiring technique was helpful in restoring the abductor level arm and multi-planar stability, which enabled better rehabilitation and resulted in excellent clinical and radiological outcomes with minimal risk of mechanical failure.

Numerical modeling of the damaged cement orthopedic in three variants of total hip prostheses

  • Cherfi Mohamed;Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Ait Kaci Djafar;Benouis Ali;Zahi Rachid;Sahli Abderahmen
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.251-262
    • /
    • 2024
  • Numerical modeling using the finite element method (FEM) offers crucial insights into the mechanical behavior of prostheses, including stress and strain distribution, load transfer, and stress intensity factors. Analyzing cracking in PMMA surgical cement (polymethylmethacrylate) for total hip prostheses (THP) is essential for understanding the loosening phenomenon, as the rupture of orthopedic cement is a primary cause. By understanding various failure mechanisms, significant advancements in cemented total prostheses can be achieved. This study performed a numerical analysis using a 3D FEM model to evaluate stress levels in different THP models, aiming to model damage in the orthopedic cement used in total hip arthroplasty. Utilizing ABAQUS software, FEM, and XFEM, the damage in three types of THPs-Charnley (CMK3), Osteal (BM3), and THOMPSON was modeled under stumbling loading conditions. XFEM allowed for the consideration of crack propagation between the cement and bone, while the GEARING criterion employed a user-defined field subroutine to model damage parameters. The study's findings can contribute to improving implant fixation techniques and preventing postoperative complications in orthopedic surgery.

Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis

  • Ali, Benouis;Boualem, Serier;Smail, Benbarek
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • This paper presents three-dimensional finite element method analyses of the distribution of equivalents stress of Von Mises. Induced around a cavity located in the bone cement polymethylmethacrylate (PMMA). The presences and effect of its position in the cement was demonstrated, thus on the stress level and distribution. The porosity interaction depending on their positions, and their orientations on the interdistances their mechanical behaviour of bone cement effects were analysed. The obtained results show that micro-porosity located in the proximal and distal zone of the prosthesis is subject to higher stress field. We show that the breaking strain of the cement is largely taken when the cement, containing the porosities very close adjacent to each other.