DOI QR코드

DOI QR Code

Numerical modeling of the damaged cement orthopedic in three variants of total hip prostheses

  • Cherfi Mohamed (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Zagane Mohammed El Sallah (Department of Mechanical Engineering, University of Ibn Khaldoun) ;
  • Moulgada Abdelmadjid (Department of Mechanical Engineering, University of Ibn Khaldoun) ;
  • Ait Kaci Djafar (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Benouis Ali (Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of Sidi Bel Abbes) ;
  • Zahi Rachid (Department of Mechanical Engineering, University of Relizane) ;
  • Sahli Abderahmen (Department of Mechanical Engineering, University of Sidi Bel Abbes)
  • Received : 2023.12.18
  • Accepted : 2024.07.15
  • Published : 2024.08.10

Abstract

Numerical modeling using the finite element method (FEM) offers crucial insights into the mechanical behavior of prostheses, including stress and strain distribution, load transfer, and stress intensity factors. Analyzing cracking in PMMA surgical cement (polymethylmethacrylate) for total hip prostheses (THP) is essential for understanding the loosening phenomenon, as the rupture of orthopedic cement is a primary cause. By understanding various failure mechanisms, significant advancements in cemented total prostheses can be achieved. This study performed a numerical analysis using a 3D FEM model to evaluate stress levels in different THP models, aiming to model damage in the orthopedic cement used in total hip arthroplasty. Utilizing ABAQUS software, FEM, and XFEM, the damage in three types of THPs-Charnley (CMK3), Osteal (BM3), and THOMPSON was modeled under stumbling loading conditions. XFEM allowed for the consideration of crack propagation between the cement and bone, while the GEARING criterion employed a user-defined field subroutine to model damage parameters. The study's findings can contribute to improving implant fixation techniques and preventing postoperative complications in orthopedic surgery.

Keywords

References

  1. Abderahmane, S., Djafar, A.K., Rachid, Z., Abdelmadjid, M. and Smail, B. (2019), "Numerical simulation of a crack emanating from a micro-cavity in the orthopedic cement by technical sub modeling of total hip prosthesis", Frattura ed Integrita Strutturale, 13(49), 586-598. https://doi.org/10.3221/IGFESIS.49.54.
  2. Brand, R.A., Mont, M.A. and Manring, M.M. (2011), "Biographical sketch: Themistocles Gluck (1853-1942)", Clin. Orthopaed. Relat. Res., 469, 1525-1527. https://doi.org/10.1007/s11999-011-1837-7.
  3. Charnley, J. (1960), "Anchorage of the femoral head prosthesis to the shaft of the femur", J. Bone Joint Surgery, 42(1), 28-30. https://doi.org/10.1302/0301-620X.42B1.28.
  4. Choi, K., Kuhn, J.L., Ciarelli, M.J. and Goldstein, S.A. (1990), "The elastic moduli of humansubchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus", J Biomech., 23, 1103-1113. https://doi.org/10.1016/0021-9290(90)90003-L.
  5. Culleton, P., Prendergast, P.J. and Taylor, D. (1993), "Fatigue failure in the cement mantle of an artificial hip joint", Clinic. Mater., 12(2), 95-102. https://doi.org/10.1016/0267-6605(93)90056-D.
  6. Dunne, N., Tzagiollari, A., Sahebalzamani, M. and Dunne, T.J. (2021), "Acrylic cements for bone fixation in joint replacement", Joint Replace. Technol., 213-262. https://doi.org/10.1016/B978-0-12-821082-6.00021-2.
  7. Dunne, N.J. and Orr, J.F. (2001), "Influence of mixing techniques on the physical properties of acrylic bone cement", Biomater., 22(13), 1819-1826. https://doi.org/10.1016/S0142-9612(00)00363-X.
  8. El Sallah Zagane, M., Moulgada, A., Yaylaci, M., Abderahmen, S., Ozdemir, M. and Yaylaci, E.C.R.E.N. (2023), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech., 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635.
  9. El Sallah, Zagane. M., Ali, B. and Abderahmen, S. (2020), "Effect of force during stumbling of the femur fracture with a different ce-mented total hip prosthesis", Biomater. Biomech. Bioeng, 5(1), 11-23.
  10. El Sallah, Zagane. M., Ali, B., Abderahmen, S. and Serier, B. (2017), "Numerical simulation of the femur fracture with and without prosthesis under static loading using extended finite element method (X-FEM)", J. Mech. Eng., 14(1), 97-112.
  11. Gearing, B.P. and Anand, L. (2004), "On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing", Int. J. Solid. Struct., 41(11), 3125-3150. https://doi.org/10.1016/j.ijsolstr.2004.01.017.
  12. Graham, J., Pruitt, L., Ries, M. and Gundiah, N. (2000). Fracture and fatigue properties of acrylic bone cement: the effects of mixing method, sterilization treatment, and molecular weight. J. Arthroplast., 15(8), 1028-1035. https://doi.org/10.1054/arth.2000.8188.
  13. Isa, M.I.M., Shuib, S., Romli, A.Z., Shokri, A.A., Arrif, I.M. and Hamizan, N.S. (2021), "Finite Element Analysis (FEA) of the different cement mixture for total hip replacement", 2021 IEEE National Biomedical Engineering Conference (NBEC), 13-18. https://doi.org/10.1109/NBEC53282.2021.9618754.
  14. Lewis, G. (1999), "Apparent fracture toughness of acrylic bone cement: effect of test specimen configuration and sterilization method", Biomater., 20(1), 69-78. https://doi.org/10.1016/S0142-9612(98)00145-8.
  15. Lewis, G. and Mladsi, S. (1998), "Effect of sterilization method on properties of Palacos® R acrylic bone cement", Biomater., 19(1- 3), 117-124. https://doi.org/10.1016/S0142-9612 (97)00165-8.
  16. Maloney, W.J., Jasty, M., Burke, D.W., O'Connor, D.O., Zalenski, E.B., Bragdon, C. and Harris, W.H. (1989), "Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling", Clinic. Orthopaed. Relat. Res., 249, 249129-140.
  17. McCormack, B.A.O., Prendergast, P.J. and Gallagher, D.G. (1996), "An experimental study of damage accumulation in cemented hip prostheses", Clinic. Biomech., 11(4), 214-219. https://doi.org/10.1016/0268-0033(95)00076-3.
  18. Moulgada, A., Zagane, M.E.S., Yaylaci, M., Djafar, A.K., Abderahmane, S., O zturk, S. and Yaylaci, E.U. (2023), "Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period", Struct. Eng. Mech., 87(6), 575-583. https://doi.org/10.12989/sem.2023.87.6.575.
  19. Nigg, B.M. and Herzog, W. (1999), Biomechanics of the Musculo-Skeletal System.
  20. Spece, H., Ouellette, E.S., Jones, O.L., MacDonald, D.W., Piuzzi, N.S., Lee, G.C., ... & Kurtz, S.M. (2021), "Fretting corrosion, third-body polyethylene damage, and cup positioning in primary vs revision dual mobility total hip arthroplasty", J. Arthroplast., 36(7), S80-S87. https://doi.org/10.1016/j.arth.2021.01.035.
  21. Topoleski, L.D.T., Ducheyne, P. and Cuckler, J.M. (1993), "Microstructural pathway of fracture in poly (methyl methacrylate) bone cement", Biomater., 14(15), 1165-1172. https://doi.org/10.1016/0142-9612(93)90162-U.
  22. Topoleski, L.T., Ducheyne, P. and Cukler, J.M. (1990), "A fractographic analysis of in vivo poly (methyl methacrylate) bone cement failure mechanisms", J. Biomed. Mater. Res., 24(2), 135-154. https://doi.org/10.1002/jbm.820240202.
  23. Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L. (2000). Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration", J. Biomech., 33(12), 1611-1618. https://doi.org/10.1016/S0021-9290(00)00140-8.
  24. Zagane, M.E.S., Abdelmadjid, M., Yaylaci, M., Abderahmen, S. and Yaylaci, E.U. (2023), "Finite element analysis of the femur fracture for a different total hip prosthesis (Charnley, Osteal, and Thompson)", Struct. Eng. Mech., 88(6), 583-588. https://doi.org/10.12989/sem.2023.88.6.583.
  25. Zagane, M.E.S., Benouis, A., Moulgada, A., Djebbar, N. and Sahli, A. (2020), "Biomechanical behaviour of the total hip prosthesis subjected to normal gait cycle load: Identification of the damage in the cement mantle", J. Serb. Soc. Comput. Mech., 14(2), 14-30.
  26. Zhang, L., Liu, H., Chen, T. and Yuan, F. (2023), "Initial damage analysis in bone cement-stem debonding procession of cemented hip arthropsty", Mater. Des., 225, 111486. https://doi.org/10.1016/j.matdes.2022.111486.
  27. Zhang, L., Liu, H., Yuan, F., Chen, T., Xu, L. and Wang, J. (2023), "Failure characteristics analysis of total cemented hip repalcement", Arch. Clinic. Psychiat., 50(6), 1. https://doi.org/10.15761/0101-60830000000702.