• Title/Summary/Keyword: Hip, Gait

Search Result 235, Processing Time 0.034 seconds

The Changes of Joint Moments According to Weight Loading Gait on Normal Adults (정상 성인의 무게 부하 보행이 관절 모멘트의 변화에 미치는 영향)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2003
  • The purposes of this study were to describe and compare pint moments according to 6 types of gait methods during free speed. 15 volunteers(7 male, 8 female: mean age = 23.33 yrs.) participated and performed 6 types of gait methods. From the 3 types of pint moments of lower extremities(hip, knee, ankle and foot), the following results were made: 1. In left hip pint, the flexion-extension moment was not significantly different, but the adduction-abduction moment and rotation moment were showed different curves during stance phase. 2. In left knee pint, the flexion-extension moment was not significantly different, but the varus-valgus moment and rotation moment were showed different curves during stance phase. 3. In left ankle and foot the dorsiflexion-plantarflexion moment was not significantly different but the varus-valgus moment and rotation moment were showed different curves during stance phase. In conclusion, because weight loading gait with 10-20% of body weight were normal gait patterns, It was inferred that all weight loading gaits did not indicate noxious reactions of human body.

  • PDF

A Novel Powered Gait Orthosis using Pneumatic Muscle Actuator

  • Kang, Sung-Jae;Ryu, Jei-Cheong;Moon, In-Hyuk;Ryu, Jae-Wook;Mun, Mu-Seung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1500-1503
    • /
    • 2003
  • One of the main goals in the rehabilitation of SCI patients is to enable the patient to stand and walk themselves. We are developing high-thrust powered gait orthosis(PGO) that use air muscle actuator(shadow robot Co., UK) to be assisted gait and rehabilitation purposes of them. We made of PD controller and measured hip joint angle by its load and the pressure to control air muscle of PGO. As a results, maximum flexion angle of hip joint is $20^{\circ}$, and angular velocity is 30.4${\pm}2.5^{\circ}/sec$, and then delay time of system was average 0.62${\pm}$0.03s. As the hip flexion angle and the pelvic angle is decreased during the gait with PGO, the patient can walk faster. By using the PGO, the energy consumption can also be decreased. therefore, the proposed PGO can be a very useful assitive device for the paraplegics to walk.

  • PDF

Effects of Hip Joint Mobilization on Pain, Balance, and Gait in Patients with Patellofemoral Pain Syndrome (고관절 가동술이 슬개대퇴통증증후군 환자의 통증, 균형 및 보행에 미치는 영향)

  • Jeong, Eui-young;Park, Si-hyun
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • Background: Patellofemoral pain syndrome (PFPS) is common knee disorder encountered in clinical: notably, altered hip biomechanic may contribute to PFPS. In this study, We investigated the effects of hip joint mobilization on pain, balance, and gait in patients with PFPS. Methods: Patients were randomly assigned to a control group (n=18) or an experimental group (n=20). Both groups received exercise therapy thrice a week for 4 weeks. The experimental group performed additional hip joint mobilization thrice a week for 4 weeks. Measurement were obtained in each patient pre-intervention and post-intervention (after 4 weeks). Results: The assessed items included the visual analog scale (VAS), one leg standing test (OLS), timed up and go test (TUG), and the 10m walk test (10MWT). Post-intervention assessment showed significantly improved results in both groups (p<.01). A significant intergroup difference was observed only in the results of the 10MWT (p<.05). Conclusion: Our results indicate that hip joint mobilization with exercise therapy may be useful to improve PFPS.

Effects of Resistance Strengthening Exercise for the Hip Flexor and Extensor on Functional Improvement in Chronic Stroke Patients (고관절근력강화운동이 뇌졸중환자의 기능증진에 미치는 효과)

  • Kang, Kwon-Young;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.13 no.3
    • /
    • pp.10-17
    • /
    • 2006
  • The purpose of this study was to determine the consequence of resistance strengthening exercise on the hip flexor and extensor performed to improve functional mobility in stroke patients more than six months post stroke. Seventeen patients were randomized into two groups. Both groups received conventional physical therapy for six weeks. In addition, the experimental group performed eccentric resistance strengthening exercise in the hip flexor and extensor using an isokinetic dynamometer. The hip flexor and extensor strength, stair up and down mobility, timed get up and go (TUG), 10 m gait velocity, and functional reach were repeatedly measured at baseline, three weeks, and six weeks after treatment. The results were as follows: 1. The experimental group improved more remarkably in the hip flexor and extensor strength, stair up and down mobility, and the 10 m gait velocity after three weeks and six weeks of treatment (p<.05), 2. The control group improved significantly in the hip flexor and extensor strength, and 10 m gait velocity after three weeks of treatment (p<.05), 3. At each three and six week point, the experimental group made greater gains in hip flexor and extensor strength, stair up and down mobility, and 10 m gait velocity than the control group (p<.05). In conclusion, it is desirable to perform resistance strengthening exercises combined with conventional physical therapy to improve functional mobility in chronic stroke patients.

  • PDF

The effect of biomechanical isokinetic excercise of residual muscles in the stump on restoring gait of transfemoral and transtibial amputees (하지절단자의 보행 복원을 위한 단단부 잔존근육의 생체역학적 등속성 운동 효과에 대한 연구)

  • 홍정화;송창호;이재연;문무성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.723-728
    • /
    • 2003
  • The physical restoration technology for lower limb amputees is being advanced as the biomechatronics is being applied to the area of rehabilitation. As the advanced prosthetics for lower limb amputees are introduced, a suitable prescription of biomechanical rehabilitation training becomes important to utilize the advanced full features of the devices. Since lower limb amputation significantly affects biomechanical balance of mosculoskeletal system for gait, an appropriate and optimal biomechanical training and exercise should be provided to rebalance the system before wearing the prostheses. Particularly, biomechanical muscular training for hip movements in the both affected and sound lower limbs is important to achieve a normal-like ambulation. However, there is no study to understand the effect of hip muscle strength on the gait performance of lower limb amputees. To understand the hip muscle strength characteristics for normal and amputated subjects, the isokinetic exercises for various ratios of concentric contraction to eccentric contraction were performed for hip flexion-extension and adduction-abduction. As a results. biomechanical isokinetic training protocols and performance measurement methodologies for lower limb amputees were developed in this study. Using the protocols and measurement methods, it has been understood that the appropriate and optimal biomechanical prescription for the rehabilitation process for lower limb amputees is important for restoring their gait ability

  • PDF

The Effects of Pressure Biofeedback Units in Lower-Limb PNF Pattern Training on the Strength and Walking Ability of Stroke Patients (압력 바이오피드백 제공에 따른 고유수용성신경근촉진법 하지패턴 적용이 뇌졸중 환자의 근력과 보행능력에 미치는 영향)

  • Park, Jin;Song, Myung-Soo
    • PNF and Movement
    • /
    • v.18 no.1
    • /
    • pp.55-64
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the strength and walking ability of chronic stroke patients following either proprioceptive neuromuscular facilitation (PNF) pattern training with pressure biofeedback units (feedback group) or PNF pattern training without pressure biofeedback units (control group). Methods: Eighteen participants with chronic stroke were recruited from a rehabilitation hospital. They were divided into two groups: a feedback group (n = 8) and a control group (n = 10). They all received 30 minutes of neurodevelopmental therapy and PNF training for 15 minutes five times a week for three weeks. Muscle strength and spatiotemporal gait parameters were measured. Muscle strength was measured by hand-held dynamometer; gait parameters were measured by the Biodex Gait trainer treadmill system. Results: After the training periods, the feedback group showed a significant improvement in hip abductor muscle strength, hip extensor muscle strength, step length of the unaffected limb, and step time of the affected limb (p<0.05). Conclusion: The results of this study showed that proprioceptive neuromuscular facilitation pattern training with pressure biofeedback units was more effective in improving hip muscle strength and walking ability than the proprioceptive neuromuscular facilitation pattern training without pressure biofeedback units. Therefore, to strengthen hip muscles and improve the walking ability of stroke patients, using pressure biofeedback units to improve trunk stability should be considered.

Analysis of kinematics in gait motions on different grades and speeds of treadmill gait (트레드밀 보행시 경사도와 속도에 따른 보행형태의 운동학적 분석)

  • Cho, Kyu-Kwon;Kim, You-Sin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.155-171
    • /
    • 2002
  • The purpose of this study was to provide basic data for a form of gait by comparing and analyzing gait motions on different grades and speeds. In order to accomplish the purpose, 6 university students, whose ages between 20 - 25, were selected. They have gaited on 3Km/h, 4Km/h, 5Km/h of speed and 4 video cameras were used to film them. The speed of filming was 60 frame / seconds. The special variations of kinematics in gait were fixed with ankle joint angle, knee joint angle, hip joint angle, ankle angular velocity, knee angular velocity and hip angular velocity. In this study, the SPSS 10.0 for windows statistical package was used to operate on significant level of .05 for statistical management. From the result of this study, we have succeeded to obtain following conclusions; 1. As the speed increased, the value of ankle joint angle increased. Also the value of ankle joint angle was larger on decline than on incline. 2. As the speed increased, the value of knee joint angle was increased. 3. As the speed increased, the value of hip joint angle was decreased. 4. As the speed increased, the value of ankle angular velocity increased. And the value of ankle angular velocity became higher on decline than on incline. 5. The value of knee angular velocity showed higher on decline than on incline. 6. As the speed increased, the value of hip angular velocity was increased. Also the value of hip angular velocity became higher on incline than on decline.

Gait Phase Estimation Method Adaptable to Changes in Gait Speed on Level Ground and Stairs (평지 및 계단 환경에서 보행 속도 변화에 대응 가능한 웨어러블 로봇의 보행 위상 추정 방법)

  • Hobin Kim;Jongbok Lee;Sunwoo Kim;Inho Kee;Sangdo Kim;Shinsuk Park;Kanggeon Kim;Jongwon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2023
  • Due to the acceleration of an aging society, the need for lower limb exoskeletons to assist gait is increasing. And for use in daily life, it is essential to have technology that can accurately estimate gait phase even in the walking environment and walking speed of the wearer that changes frequently. In this paper, we implement an LSTM-based gait phase estimation learning model by collecting gait data according to changes in gait speed in outdoor level ground and stair environments. In addition, the results of the gait phase estimation error for each walking environment were compared after learning for both max hip extension (MHE) and max hip flexion (MHF), which are ground truth criteria in gait phase divided in previous studies. As a result, the average error rate of all walking environments using MHF reference data and MHE reference data was 2.97% and 4.36%, respectively, and the result of using MHF reference data was 1.39% lower than the result of using MHE reference data.

Plantar Hypoesthesia Alters Gait Kinematics Pattern in Individuals with and without Chronic Ankle Instability (만성 발목 불안정성 환자군과 정상인 군의 발바닥 감각기능 저하에 따른 운동학적 보행 패턴의 변화)

  • Kang, Tae Kyu;Lee, Sae Yong;Lee, Inje;Kim, Byong Hun;Jeong, Hee Seong;Kim, Chang Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.79-86
    • /
    • 2021
  • Objective: The purpose of this study was to identify the effect of reduced plantar cutaneous sensation on gait kinematics during walking with and without CAI. Method: A total of 20 subjects involved in this study and ten healthy subjects and 10 CAI subjects participated underwent ice-immersion of the plantar aspect of the feet before walking test in this study. The gait kinematics were measured before and after ice-immersion. Results: We observed a before ice-immersion on plantar cutaneous sensation, CAI subject were found to reduced ankle dorsiflexion, knee external rotation, hip adduction, and internal rotation compared to control subject. After ice-immersion, CAI subjects were found to reduce knee external rotation, hip adduction. However, no significant ankle joint kinematics. Conclusion: While walking, gait pattern differences were perceived between groups with and without plantar cutaneous sensation. The results of the study may explain the abductions in the hip angle movements in CAI patients at initial contact compared to healthy subjects in the control group when plantar cutaneous sensation was reduced. A change in proximal joint kinematics may be a conservative strategy to promote normal gait patterns in CAI patients.

The Immediate Effect of Functional Massage on Pain, Range of Motion, Balance Ability and Gait Speed in Patients with Total Hip Replacement (기능적 마사지가 엉덩관절 전치환술 환자의 통증, 관절가동범위, 균형능력, 보행속도에 미치는 즉각적인 영향)

  • Park, Si-hyun;Jeong, Eui-young
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Background: Functional massage is a therapeutic massage that incorporates joint motion in non-end-range to reduce pain and improve range of motion (ROM) in patients. This study was aimed at investigating the immediate effect of functional massage on pain, range of motion, balance ability and, gait speed of patients having undergone total hip replacement. Methods: Twenty patients were treated by one participating orthopedic manual physical therapist and randomly assigned to the control group (n=10) or the experimental group (n=10). To treat patients of each group, functional massage and range of motion exercises were used. The experimental group received a functional massage and the control group received range of motion exercise for minutes for one session. The visual analog scale was used for pain assessment. Balance ability was measured using a timed up and go test and a one-leg standing test for patients. The 10-meter walk test was used for the measurement of gait speed assessment of patients. Results: Significant improvements were observed in terms of balance ability (p<.05), gait speed (p<.05), and ROM (p<.05) after functional massage. There was no significant inter-group difference (p>.05). Conclusion: Application of the functional massage showed that statistically significant improvements in ROM, gait speed, and balance ability after a single treatment session. This technique may be a useful treatment in patients having undergone total hip replacement.