• Title/Summary/Keyword: Hinge Lever

Search Result 23, Processing Time 0.026 seconds

Piezoelectric Haptic Actuator Using Hinge-lever Mechanism (힌지-레버 기구를 채용한 압전 햅틱 액츄에이터)

  • Kim, Ji-Ho;Kwon, Jung-Hoon;Park, Ji-Sung;Lim, K.J.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.565-570
    • /
    • 2015
  • The haptic actuator needs to downsize in the mobile devices continuatively. In this work, the hinge lever mechanism was used in order to prevent lowering the vibration performances of the downsized actuator. The vibration performances of actuator with and without hinge-lever mechanism were simulated by the finite element method analysis. It is concluded that the hinge-lever mechanism may be a proper measure to prevent lowering the vibration performances in the downsized piezoelectric actuator.

Stress Analysis and Design Improvement to Prevent Failure of the Damping Hinges of Built-in Refrigerators (빌트인 냉장고 댐핑힌지의 응력해석 및 파손방지를 위한 설계개선)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • The damping hinge of a built-in refrigerator was examined in terms of its stress and fatigue life. Analysis of the initial design showed that stress concentration occurred at the concave surface of the hinge lever, which was broken during the door opening-and-closing endurance test of the prototype. The maximum von Mises stress at this location exceeded the yield strength. In addition, Goodman fatigue analysis of the initial design showed that the fatigue life at this location was consistent with the failure observed during the endurance test. Based on these results, an improved design for the damping hinge was derived. Analysis of this improved design showed that the stress concentration in the hinge lever of the initial design was eliminated. In this case, the maximum stress occurred at the position where the hinge lever was in contact with the door stopping pin, and the maximum von Mises stress was smaller than the yield strength. Goodman fatigue analysis of the improved design indicated that the fatigue life of the entire damping hinge was infinite. It was therefore concluded that the improved design does not suffer from fatigue damage during the endurance test.

A Study on the Displacement Magnification Mechanism of Two-Lever System using Flexure Hinge (유연 힌지를 이용한 이중레버 시스템의 변위증폭 메카니즘에 관한 연구)

  • Jea, Wone-Soo;Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • The high-technology industries including a semi-conductor and an information communication need an ultra-precision technology from the technological points of view. Nano technology based on an ultra-precision technology is being studied to overcome the delicate technology that may occur in the semi-conductor fields. Then, the transferring equipment with high resolution and long displacement becomes an important technology. The goal of this study is to analyze the displacement magnification mechanism driven by piezoelectric actuator which has high resolution and fast response characteristics using flexure hinge with the merits of soft displacement, negligible back-lash and stick-slip, and no-lubrication. The analyses to reduce the magnification losses occurred during the magnification process are performed using ANSYS software based on FEM. The five design variables such as arm thickness, thickness of hinge, radius of hinge, length of input side at the 1st lever and magnification ratio of 1st lever are optimized to induce the maximum magnification ratio using Taguchi method.

  • PDF

Design of lever actuator for the next generation optical disk (차세대 광디스크용 레버 구동기의 설계)

  • 한찬수;김수현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.397-400
    • /
    • 2000
  • The demands of high data transfer rate and high recording density in optical disk memory device are being increased. In order to achieve high performance, lever actuator for optical disk is proposed. Firstly, the role of lever and structure are discussed and the flexure hinge is introduced to enhance the precise movement. Next is to present the magnetic circuit structure and concept design for the lever actuator. Finally, the dynamic modeling of the lever actuator is found and the analysis results are shown. Consequently, the lever actuator shows the possibility as a pickup actuator for the next generation optical disk.

  • PDF

Design and Analysis of a Lever actuator for the Optical Disk Pickup (광디스크 픽업용 3축 레버 구동기의 설계 및 해석)

  • Han, Chang-Soo;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.41-50
    • /
    • 2002
  • Optical disk system aiming at fast data transfer rate and high-density recording requires the improvement in performance of the pickup head. Especially, the pickup actuator needs better linearity and stability. So, a lever actuator for optical disk is proposed. In this paper, the role of lever and its structure are discussed and the flexure hinge is introduced to enhance the precise movement. Using the Newoton's method, the motion of equation for the lever actuator is obtained. The results are compared with the analysis results by the FEM (Finite Element Method) for the vibration and the magnetic field. Consequently, the lever actuator has the 2"d system characteristics in 3-axis moving directions and superior stability for the external vibration.tion.

A study on fine actuating stage for autofocus by using flexure-hinge type lever mechanism (탄성 힌지 타입 레버 메커니즘을 이용한 자동 초점 조절 미세구동장치에 대한 연구)

  • Lee J.S.;Hong S.I.;Kim H.S.;Jang H.K.;Lee K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.665-666
    • /
    • 2006
  • In precision laser microfabrication, focusing is essential to acquire good machining precision and uniform machining quality. If it does not perform, laser machining cannot be realized. So, confocal scanning method with high depth resolution is used for focus detection technique. This paper is concerned with a procedure for design, analysis and performance test of an autofocus fine actuating stage, which is composed of flexure-hinge type lever mechanism and piezoelectric actuator. Through series of analytical design, the stage is simplified as a rigid bodies(lever and main body) and springs(flexure hinges). The simplified model was applied to determine the dimension of flexure hinges and lever. After structural analysis confirmed design requirement, an actual stage was made and verified through an experiment on the static and dynamic characteristics(maximum stroke and 1st natural frequency). The fabricated stage was satisfied with the design requirement.

  • PDF

Optimal Design for Parallelogram Type Flexure Hinge (Parallelogram형 Flexure Hinge 에 의한 Motion Stage 의 최적 설계)

  • Choi, Ju Yong;Eom, Sang In;Kim, Jung Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.107-111
    • /
    • 2015
  • This paper proposes an optimal design for a precision motion stage employing a parallelogram flexure hinge. The voltage applied to the piezo element produces motion that is amplified through a 3-stage amplification structure. Especially, instead of the generally used conic section flexure hinge a parallelogram shaped flexure hinge is used that improves the flexibility of the lever. An Finite Element Analysis is performed on each motion stage lever where optimal design was achieved using Response Surface Methodology(RSM).

Design and Control of 3DOF High Precision Positioning System With Double L Type Flexure Hinge Module

  • Kim, Ki-Beom;Jeon, Seung-Jin;Hwang, Dal-Yeon;Choi, Young-Jun;Park, Suk-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2524-2528
    • /
    • 2003
  • High-precision position system is widely used in lots of fields such as semiconductor industry, biotechnology, display and other up-to-date industry field. One of the main issues is to have a long traveling range with precision. There are a few solutions. For instance, there are inchworm methods, lever principle. In this study, we use lever principle to amplify output displacement with a new mechanical amplification structure. We designed new type 3DOF stage with PZT actuator and capacitive sensor. Non-monolithic structure is suggested to obtain the convenience of assembly and modification. Driving parts are designed as modules that generate displacement amplification of each axis. Designed motion module consists of 3 flexure hinges and a PZT actuator with double L lever structure.

  • PDF

Analysis of Flexure Hinge Neck Thickness of a Lever in Ultra Precision Stages of a Long Travel Range (유연 힌지 구조의 스테이지 구동범위 확대를 위한 힌지의 목두께 해석)

  • Hwang Eunjoo;Min Kyungsuk;Song Sinhyung;Choi Woo Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.121-129
    • /
    • 2005
  • Lever mechanisms are usually employed to enlarge output displacements in precision stages. In this study, theoretical analysis is done for a precision stage employing a lever and flexure hinges, including bending effect. This study presented relations between design parameters and magnification ratio. This study presents optimal values for the parameters to achieve a longer stage displacement. The analysis is verified by finite element analysis. It is found that adjusting stiffnesses can increase the travel range significantly.

Obtaining Design Characteristics of Lever-linked Roberval Mechanism through Weighing Method (무게측정방식에 따른 Lever-linked Roberval Mechanism의 설계특성)

  • An, Ji Yun;Ahn, Jung Hwan;Lee, Gil Seung;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.336-341
    • /
    • 2020
  • The deflection and null balance methods are used for precision force measurement in the precision industry. Since both methods are based on deformation, the performance of the load cell mechanism is important. In this study, the design variables were obtained via the free body diagram of a lever-linked Roberval mechanism (combined with a flexible hinge link and a Roberval mechanism), and the design characteristics were analyzed according to the weight method. Based on the design characteristics, the optimal design was conducted according to the weight method and FEM was used to verify its reliability.