• Title/Summary/Keyword: Hilbert spaces

Search Result 201, Processing Time 0.031 seconds

A HYBRID METHOD FOR A SYSTEM INVOLVING EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE SEMIGROUP

  • THUY, LE QUANG;MUU, LE DUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.457-478
    • /
    • 2015
  • In this paper we propose an iteration hybrid method for approximating a point in the intersection of the solution-sets of pseudomonotone equilibrium and variational inequality problems and the fixed points of a semigroup-nonexpensive mappings in Hilbert spaces. The method is a combination of projection, extragradient-Armijo algorithms and Manns method. We obtain a strong convergence for the sequences generated by the proposed method.

ISOMETRIC REFLECTIONS IN TWO DIMENSIONS AND DUAL L1-STRUCTURES

  • Garcia-Pacheco, Francisco J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1275-1289
    • /
    • 2012
  • In this manuscript we solve in the positive a question informally proposed by Enflo on the measure of the set of isometric reflection vectors in non-Hilbert 2-dimensional real Banach spaces. We also reformulate equivalently the separable quotient problem in terms of isometric reflection vectors. Finally, we give a new and easy example of a real Banach space whose dual has a non-trivial L-summand that does not come from an M-ideal in the predual.

PERTURBATION RESULTS FOR HYPERBOLIC EVOLUTION SYSTEMS IN HILBERT SPACES

  • Kang, Yong Han;Jeong, Jin-Mun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The purpose of this paper is to derive a perturbation theory of evolution systems of the hyperbolic second order hyperbolic equations. We give an example of a partial functional equation as an application of the preceding result in case of the mixed problems for hyperbolic equations of second order with unbounded principal operators.

LOCALIZATION PROPERTY AND FRAMES II

  • HA YOUNG-HWA;RYU JU-YEON
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.101-115
    • /
    • 2006
  • Localization of sequences with respect to Riesz bases for Hilbert spaces are comparable with perturbation of Riesz bases or frames. Grochenig first introduced the notion of localization. We introduce more general definition of localization and show that exponentially localized sequences and polynomially localized sequences with respect to Riesz bases are Bessel sequences. Furthermore, they are frames provided some additional conditions are satisfied.

NONLINEAR ALGORITHMS FOR A COMMON SOLUTION OF A SYSTEM OF VARIATIONAL INEQUALITIES, A SPLIT EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEMS

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.495-524
    • /
    • 2016
  • In this paper, we propose an iterative algorithm for finding a common solution of a system of generalized equilibrium problems, a split equilibrium problem and a hierarchical fixed point problem over the common fixed points set of a finite family of nonexpansive mappings in Hilbert spaces. Furthermore, we prove that the proposed iterative method has strong convergence under some mild conditions imposed on algorithm parameters. The results presented in this paper improve and extend the corresponding results reported by some authors recently.

ON CHAOTIC OPERATOR ORDER $A\;{\gg}\;C\;{\gg}\;B$ IN HILBERT SPACES

  • Lin, C.S.
    • East Asian mathematical journal
    • /
    • v.24 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • In this paper, we characterize the chaotic operator order $A\;{\gg}\;C\;{\gg}\;B$. Consequently all other possible characterizations follow easily. Some satellite theorems of the Furuta inequality are naturally given. And finally, using results of characterizing $A\;{\gg}\;C\;{\gg}\;B$, and by the Douglas's majorization and factorization theorem we are able to characterize the chaotic operator order $A\;{\gg}\;B$ in terms of operator equalities.

  • PDF

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

REGULARIZED SOLUTION TO THE FREDHOLM INTEGRAL EQUATION OF THE FIRST KIND WITH NOISY DATA

  • Wen, Jin;Wei, Ting
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.23-37
    • /
    • 2011
  • In this paper, we use a modified Tikhonov regularization method to solve the Fredholm integral equation of the first kind. Under the assumption that measured data are contaminated with deterministic errors, we give two error estimates. The convergence rates can be obtained under the suitable choices of regularization parameters and the number of measured points. Some numerical experiments show that the proposed method is effective and stable.

APPROXIMATE REACHABLE SETS FOR RETARDED SEMILINEAR CONTROL SYSTEMS

  • KIM, DAEWOOK;JEONG, JIN-MUN
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.469-481
    • /
    • 2020
  • In this paper, we consider a control system for semilinear differential equations in Hilbert spaces with Lipschitz continuous nonlinear term. Our method is to find the equivalence of approximate controllability for the given semilinear system and the linear system excluded the nonlinear term, which is based on results on regularity for the mild solution and estimates of the fundamental solution.