References
- P. G. Casazza and O. Christensen, Approximation of the inverse frame opertor and applications to Gabor frames, J. Approx. Theory 103 (2000), 338-356 https://doi.org/10.1006/jath.1999.3350
- O. Christensen, An introduction to frames and Riesz basis, Birkhauser, Boston, 2003
- O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), 2199-2201
- O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), 1217-1220
- E. Cordero and K. Grochenig, Localization of frames II, Appl. Comput. Harmon. Anal. 17 (2004), 29-47 https://doi.org/10.1016/j.acha.2004.02.002
- I. Daubechies, Ten Lectures on Wavelets, SIAM Conference Series in Applied Mathematiccs, SIAM, Boston, 1992
- K. Grochenig, Localization of frames, Banach frames, and the invertiblility of the frame operator, J. Fourier Anal. Appl. 10 (2004), 105-132 https://doi.org/10.1007/s00041-004-8007-1
- K. Grochenig, Localized frames are finite unions of Riesz sequences, Adv. Comput. Math. 18 (2003), 149-157 https://doi.org/10.1023/A:1021368609918
- K. Grochenig, Foundations of time-frequency analysis, Birkhauser, Boston, 2001
- Y. H. Ha and J. Y. Ryu, Localization property and frames, Honam Math. J. 27 (2005), 233-241
- R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, NewYork, 1980