References
- Q. H. Ansari, C. S. Lalitha and M. Mehta, Generalized Convexity, Nonsmooth Variational Inequalities and Nonsmooth Optimization, CRC Press, Boca Raton, 2014.
- Q. H. Ansari, N. C. Wong and J. C. Yao, The existence of nonlinear inequalities, Appl. Math Lett. 12 (1999), 89-92.
- E. Blum and W. Cettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994), 123-145.
- A. Bnouhachem, A self-adaptive method for solving general mixed variational inequalities, J. Math. Anal. Appl. 309 (2005), 136-150. https://doi.org/10.1016/j.jmaa.2004.12.023
- A. Bnouhachem, A new projection and contraction method for linear variational inequalities, J. Math. Anal. Appl. 314 (2006), 513-525. https://doi.org/10.1016/j.jmaa.2005.03.095
- N. Buong and L. T. Duong, An explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 151 (2011), 513-524. https://doi.org/10.1007/s10957-011-9890-7
- L. C. Ceng, Q. H. Ansari, S. Schaible and J. C. Yao, Iterative methods for generalized equilibrium problems, systems of general generalized equilibrium problems and fixed point problems for nonexpansive mappings in Hilbert spaces, Fixed Point Theory 12 (2011), 293-308.
- L. C. Ceng, Q. H. Ansari and J. C. Yao, Some iterative methods for finding fixed points and for solving constrained convex minimiization problems, Nonlinear Anal. 74 (2011), 5286-5302. https://doi.org/10.1016/j.na.2011.05.005
- L. C. Ceng, C. Y. Wang and J. C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math Methods Oper. Res. 67 (2008), 375-390. https://doi.org/10.1007/s00186-007-0207-4
- L. C. Ceng and J. C. Yao, A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem, Nonlinear Anal. 72 (2010), 1922-1937. https://doi.org/10.1016/j.na.2009.09.033
- Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), 221-239. https://doi.org/10.1007/BF02142692
- S. S. Chang, H. W. J. Lee and C. K. Chan, A new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal. 70 (2009), 3307-3319. https://doi.org/10.1016/j.na.2008.04.035
- F. Cianciaruso, G. Marino, L. Muglia and Y. Yao, A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem, Fixed Point Theory Appl. 2010, 2010: 383740.
- P. L. Combetters and S. A. Hirstoaga, Equilibrium programming using proximal like algorithms, Math. Program. 78 (1997), 29-41. https://doi.org/10.1016/S0025-5610(96)00071-8
- P. Duan and S. He, Generalized viscosity approximation methods for nonexpansive mappings, Fixed Point Theory Appl. 2014, 2014: 68. https://doi.org/10.1186/1687-1812-2014-68
- K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Stud. Adv. Math. vol.28, Cambridge University Press, Cambridge, 1990.
- G. Lopez, V. Martin and H. K. Xu, Iterative algorithm for the multiple-sets split feasibility problem, In: Biomedical Mathematics Promising Directions: In Imaging Therapy Planning and Inverse Problems, pp. 243-279, 2009.
- P. E. Mainge and A. Moudafi, Strong convergence of an iterative method for hierarchical fixed point problems, Pac. J. Optim. 3 (2007), 529-538.
- X. Qin, M. Shang and Y. Su, A general iterative method for equilibrium problem and fixed point in Hilbert spaces, Nonlinear Anal. 69 (2008), 3897-3909. https://doi.org/10.1016/j.na.2007.10.025
- T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 35 (2005), 227-239.
- N. Suzuki, Moudafi's viscosity approximations with Meir-Keeler contractions, J. Math. Anal. Appl. 325 (2007), 342-352. https://doi.org/10.1016/j.jmaa.2006.01.080
- M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 689-694. https://doi.org/10.1016/j.na.2010.03.058
- R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. Math. Appl. 41 (2001), 1025-1031. https://doi.org/10.1016/S0898-1221(00)00336-9
- R. U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (2005), 1286-1292. https://doi.org/10.1016/j.aml.2005.02.026
- H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory and Appl. 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589
- I. Yamada, The hybrid steepest descent method for the variational inequality problems over the intersection of fixed points sets of nonexpansive mapping. In: D. Butnariu, Y. Censor, S. Reich (eds). Inherently Parallel Algorithms in Feasibility and Optimization and Their Application, pp. 473-504, North-Holland, Amsterdam, 2001.
- C. Zhang and C. Yang, A new explicit iterative algorithm for solving a class of variational inequalities over the common fixed points set of a finite family of nonexpansive mappings, Fixed Point Theory Appl. 2014, 2014: 60. https://doi.org/10.1186/1687-1812-2014-60
- H. Y. Zhou and P. A. Wang, A simpler explicit iterative algorithm for a class of variational inequalities in Hilbert spaces, J. Optim. Theory Appl. 161 (2014), 716-727. https://doi.org/10.1007/s10957-013-0470-x