DOI QR코드

DOI QR Code

GENERALIZED CONDITIONAL YEH-WIENER INTEGRALS FOR THE SAMPLE PATH-VALUED CONDITIONING FUNCTION

  • Received : 2016.08.10
  • Accepted : 2016.09.09
  • Published : 2016.09.30

Abstract

The purpose of this paper is to treat the generalized conditional Yeh-Wiener integral for the sample path-valued conditioning function. As a special case of our results, we obtain the results in [6].

Keywords

References

  1. J. S. Chang, Modified conditional Yeh-Wiener integral with vector-valued conditioning function, J. Korean Math. Soc. 38 (2001), 49-59.
  2. J. S. Chang and J. H. Ahn, A note on the modi ed conditional Yeh-Wiener integral, Comm. Korean Math. Soc. 16 (2001), 627-635.
  3. J. S. Chang and J. H. Ahn, Generalized conditional Yeh-Wiener integral, Rocky Mountain J. Math. 35 (2005), 1099-1114. https://doi.org/10.1216/rmjm/1181069677
  4. K. S. Chang , J. M. Ahn and J. S. Chang, An evaluation of conditional Yeh-Wiener integrals, Pacific J. Math. 124 (1986), 107-117. https://doi.org/10.2140/pjm.1986.124.107
  5. C. Park and D. L. Skoug, Conditional Yeh-Wiener integrals with vector-valued conditioning functions, Proc. Amer. Math. Soc. 105 (1989), 450-461. https://doi.org/10.1090/S0002-9939-1989-0960650-6
  6. C. Park and D. L. Skoug, Sample path-valued conditional Yeh-Wiener integrals and a Wiener integral equation, Proc. Amer. Math. Soc. 115(1992), 479-487. https://doi.org/10.1090/S0002-9939-1992-1104401-3
  7. C. Park and D. L. Skoug, Multiple path-valued conditional Yeh-Wiener integrals, Proc. Amer. Math. Soc. 124 (1996), 2029-2039. https://doi.org/10.1090/S0002-9939-96-03458-2
  8. C. Park and D. L. Skoug, Boundary-valued conditional Yeh-Wiener integrals and a Kac-Feynman Wiener integral equation, J. Korean Math. Soc. 33 (1996), 763-775.