DOI QR코드

DOI QR Code

GENERALIZATION OF THE SCHENSTED ALGORITHM FOR RIM HOOK TABLEAUX

  • Received : 2016.07.04
  • Accepted : 2016.09.01
  • Published : 2016.09.30

Abstract

In [6] Schensted constructed the Schensted algorithm, which gives a bijection between permutations and pairs of standard tableaux of the same shape. Stanton and White [8] gave analog of the Schensted algorithm for rim hook tableaux. In this paper we give a generalization of Stanton and White's Schensted algorithm for rim hook tableaux. If k is a fixed positive integer, it shows a one-to-one correspondence between all generalized hook permutations $\mathcal{H}$ of size k and all pairs (P, Q), where P and Q are semistandard k-rim hook tableaux and k-rim hook tableaux of the same shape, respectively.

Keywords

References

  1. A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin. Theory Ser. A 43 (1986), 320-328. https://doi.org/10.1016/0097-3165(86)90070-1
  2. D. E. Knuth, Sorting and Searching; The Art of Computer Programming, Vol. 3 (1973), Addison-Wesley, Mass.
  3. D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709-727. https://doi.org/10.2140/pjm.1970.34.709
  4. J. Lee, A Schensted algorithm for shifted rim hook tableaux, J. Korean Math. Soc. 31 (1994), 179-203.
  5. B. E. Sagan, Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62-103. https://doi.org/10.1016/0097-3165(87)90047-1
  6. C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191. https://doi.org/10.4153/CJM-1961-015-3
  7. B. Sagan and R. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55 (1990), 161-193. https://doi.org/10.1016/0097-3165(90)90066-6
  8. D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985), 211-247. https://doi.org/10.1016/0097-3165(85)90088-3
  9. D. E. White, A bijection proving orthogonality of the characters of $S_n$, Advances in Math. 50 (1983), 160-186. https://doi.org/10.1016/0001-8708(83)90038-5
  10. D. R. Worley, A Theory of Shifted Young Tableaux, Ph. D. thesis (1984), M.I.T.