References
- A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin. Theory Ser. A 43 (1986), 320-328. https://doi.org/10.1016/0097-3165(86)90070-1
- D. E. Knuth, Sorting and Searching; The Art of Computer Programming, Vol. 3 (1973), Addison-Wesley, Mass.
- D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970), 709-727. https://doi.org/10.2140/pjm.1970.34.709
- J. Lee, A Schensted algorithm for shifted rim hook tableaux, J. Korean Math. Soc. 31 (1994), 179-203.
- B. E. Sagan, Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), 62-103. https://doi.org/10.1016/0097-3165(87)90047-1
- C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191. https://doi.org/10.4153/CJM-1961-015-3
- B. Sagan and R. Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A 55 (1990), 161-193. https://doi.org/10.1016/0097-3165(90)90066-6
- D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux, J. Combin. Theory Ser. A 40 (1985), 211-247. https://doi.org/10.1016/0097-3165(85)90088-3
-
D. E. White, A bijection proving orthogonality of the characters of
$S_n$ , Advances in Math. 50 (1983), 160-186. https://doi.org/10.1016/0001-8708(83)90038-5 - D. R. Worley, A Theory of Shifted Young Tableaux, Ph. D. thesis (1984), M.I.T.