• Title/Summary/Keyword: Hilbert spaces

Search Result 199, Processing Time 0.025 seconds

BIISOMETRIC OPERATORS AND BIORTHOGONAL SEQUENCES

  • Kubrusly, Carlos;Levan, Nhan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.585-596
    • /
    • 2019
  • It is shown that a pair of Hilbert space operators V and W such that $V^*W=I$ (called a biisometric pair) shares some common properties with unilateral shifts when orthonormal bases are replaced with biorthogonal sequences, and it is also shown how such a pair of biisometric operators yields a pair of biorthogonal sequences which are shifted by them. These are applied to a class of Laguerre operators on $L^2[0,{\infty})$.

CONVERGENCE THEOREMS OF PROXIMAL TYPE ALGORITHM FOR A CONVEX FUNCTION AND MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Aggarwal, Sajan;Uddin, Izhar;Pakkaranang, Nuttapol;Wairojjana, Nopparat;Cholamjiak, Prasit
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this paper we study the weak and strong convergence to minimizers of convex function of proximal point algorithm SP-iteration of three multivalued nonexpansive mappings in a Hilbert space.

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain;Uqba, Rafat
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.673-687
    • /
    • 2022
  • In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

MATRIX OPERATORS ON FUNCTION-VALUED FUNCTION SPACES

  • Ong, Sing-Cheong;Rakbud, Jitti;Wootijirattikal, Titarii
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.375-415
    • /
    • 2019
  • We study spaces of continuous-function-valued functions that have the property that composition with evaluation functionals induce $weak^*$ to norm continuous maps to ${\ell}^p$ space ($p{\in}(1,\;{\infty})$). Versions of $H{\ddot{o}}lder^{\prime}s$ inequality and Riesz representation theorem are proved to hold on these spaces. We prove a version of Dixmier's theorem for spaces of function-valued matrix operators on these spaces, and an analogue of the trace formula for operators on Hilbert spaces. When the function space is taken to be the complex field, the spaces are just the ${\ell}^p$ spaces and the well-known classical theorems follow from our results.

PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS

  • Revesz, Szilard-Gy.;Sarantopoulos, Yannis
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.157-174
    • /
    • 2004
  • In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical $L^{p}(\mu)$ spaces. In the case $1\;{\leq}\;p\;{\leq}\;2$ we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.

A New Geometric Constant in Banach Spaces Related to the Isosceles Orthogonality

  • Yang, Zhijian;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.2
    • /
    • pp.271-287
    • /
    • 2022
  • In this paper, starting with the geometric constants that can characterize Hilbert spaces, combined with the isosceles orthogonality of Banach spaces, the orthogonal geometric constant ΩX(α) is defined, and some theorems on the geometric properties of Banach spaces are derived. Firstly, this paper reviews the research progress of orthogonal geometric constants in recent years. Then, this paper explores the basic properties of the new geometric constants and their relationship with conventional geometric constants, and deduces the identity of ΩX(α) and γX(α). Finally, according to the identities, the relationship between these the new orthogonal geometric constant and the geometric properties of Banach Spaces (such as uniformly non-squareness, smoothness, convexity, normal structure, etc.) is studied, and some necessary and sufficient conditions are obtained.

On the History of the Birth of Finsler Geometry at Göttingen (괴팅겐에서 핀슬러 기하가 탄생한 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.

APPROXIMATION METHODS FOR FINITE FAMILY OF NONSPREADING MAPPINGS AND NONEXPANSIVE MAPPINGS IN HILERT SPACESE

  • Kang, Jinlong;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.87-98
    • /
    • 2010
  • The purpose of this paper is to prove a weak convergence theorem for a common fixed points of finite family of nonspreading mappings and nonexpansive mappings in Hilbert spaces. The results presented in this paper extend and improve the results of Mondafi [A. Moudafi, Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Problems 23 (2007) 1635-1640], and Iemoto and Takahashi [So Iemoto, W.Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Analysis (2009), doi:10.1016/j.na.2009.03.064].

Halpern Subgradient Method for Pseudomonotone Equilibrium Problems in Hilbert Space

  • Thang, Tran Van;Khoa, Nguyen Minh
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.533-555
    • /
    • 2022
  • In this paper, we introduce a new algorithm for finding a solution of an equilibrium problem in a real Hilbert space. Our paper extends the single projection method to pseudomonotone variational inequalities, from a 2018 paper of Shehu et. al., to pseudomonotone equilibrium problems in a real Hilbert space. On the basis of the given algorithm for the equilibrium problem, we develop a new algorithm for finding a common solution of a equilibrium problem and fixed point problem. The strong convergence of the algorithm is established under mild assumptions. Several of fundamental experiments in finite (infinite) spaces are provided to illustrate the numerical behavior of the algorithm for the equilibrium problem and to compare it with other algorithms.