• Title/Summary/Keyword: Higher order element

Search Result 651, Processing Time 0.031 seconds

AN EXTRAPOLATED HIGHER ORDER CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.601-614
    • /
    • 2018
  • In this paper, we introduce an extrapolated higher order characteristic finite element method to approximate solutions of nonlinear Sobolev equations with a convection term and we establish the higher order of convergence in the temporal and the spatial directions with respect to $L^2$ norm.

Improving the eigenvalue using higher order elements without re-solving

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.385-398
    • /
    • 1997
  • High order finite element have a greater convergence rate than low order finite elements, and in general produce more accurate results. These elements have the disadvantage of being more computationally expensive and often require a longer time to solve the finite element analysis. High order elements have been used in this paper to obtain a new eigenvalue solution with out re-solving the new model. The optimisation of the eigenvalue via the differentiation of the Rayleigh quotient has shown that the additional nodes associated with the higher order elements can be condensed out and solved using the original finite element solution. The higher order elements can then be used to calculate an improved eigenvalue for the finite element analysis.

AN EXTRAPOLATED HIGHER ORDER CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

  • Ohm, Mi Ray;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.511-525
    • /
    • 2017
  • We introduce an extrapolated higher order characteristic finite element method to construct approximate solutions of a Sobolev equation with a convection term. The higher order of convergence in both the temporal direction and the spatial direction in $L^2$ normed space is established and some computational results to support our theoretical results are presented.

Nonlinear analysis of the RC structure by higher-order element with the refined plastic hinge

  • IU, C.K.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.579-596
    • /
    • 2016
  • This paper describes a method of the refined plastic hinge approach in the framework of the higher-order element formulation that can efficaciously evaluate the limit state capacity of a whole reinforced concrete structural system using least number of element(s), whereas the traditional design of a reinforced concrete structure (i.e. AS3600; Eurocode 2) is member-based approach. Hence, in regard to the material nonlinearities, the efficient and economical cross-section analysis is provided to evaluate the element section capacity of non-uniform and arbitrary concrete section subjected to the interaction effects, which is helpful to formulate the refined plastic hinge method. In regard to the geometric nonlinearities, this paper relies on the higher-order element formulation with element load effect. Eventually, the load redistribution can be considered and make full use of the strength reserved owing to the redundancy of an indeterminate structure. And it is particularly true for the performance-based design of a structure under the extreme loads, while the uncertainty of the extreme load is great that the true behaviour of a whole structural system is important for the economical design approach, which is great superiority over the conservative optimal strength of an individual and isolated member based on traditional design (i.e. AS3600; Eurocode 2).

Completeness requirements of shape functions for higher order finite elements

  • Rajendran, S.;Liew, K.M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.93-110
    • /
    • 2000
  • An alternative interpretation of the completeness requirements for the higher order elements is presented. Apart from the familiar condition, $\sum_iN_i=1$, some additional conditions to be satisfied by the shape functions of higher order elements are identified. Elements with their geometry in the natural form, i.e., without any geometrical distortion, satisfy most of these additional conditions inherently. However, the geometrically distorted elements satisfy only fewer conditions. The practical implications of the satisfaction or non-satisfaction of these additional conditions are investigated with respect to a 3-node bar element, and 8- and 9-node quadrilateral elements. The results suggest that non-satisfaction of these additional conditions results in poorer performance of the element when the element is geometrically distorted. Based on the new interpretation of completeness requirements, a 3-node element and an 8-node rectangular element that are insensitive to mid-node distortion under a quadratic displacement field have been developed.

A simple method of stiffness matrix formulation based on single element test

  • Mau, S.T.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.203-216
    • /
    • 1999
  • A previously proposed finite element formulation method is refined and modified to generate a new type of elements. The method is based on selecting a set of general solution modes for element formulation. The constant strain modes and higher order modes are selected and the formulation method is designed to ensure that the element will pass the basic single element test, which in turn ensures the passage of the basic patch test. If the element is to pass the higher order patch test also, the element stiffness matrix is in general asymmetric. The element stiffness matrix depends only on a nodal displacement matrix and a nodal force matrix. A symmetric stiffness matrix can be obtained by either modifying the nodal displacement matrix or the nodal force matrix. It is shown that both modifications lead to the same new element, which is demonstrated through numerical examples to be more robust than an assumed stress hybrid element in plane stress application. The method of formulation can also be used to arrive at the conforming displacement and hybrid stress formulations. The convergence of the latter two is explained from the point of view of the proposed method.

Higher Order Quadrilateral Plate Bending Finite Element (고차(高次) 판(板) 사각형(四角形) 유한요소(有限要素))

  • Shin, Young Shik;Shin, Hyun Mook;Kim, Myung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.25-32
    • /
    • 1988
  • A formulation of an isoparametric quadrilateral higher-order plate bending finite element is presented. The 8-noded 28-d.o.f. plate element has been degenerated from the three-dimensional continuum by introducing the plate assumptions and considering higher-order in-plane displacement profile. The element characteristics have been derived by the Galerkin's weighted residual method and computed by using the selective reduced integration technique to avoid shear-locking phenomenon. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed quadrilateral higher-order plate bending element over the other existing plate finite elements in both static and dynamic analyses.

  • PDF

Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element (고차 판 유한요소의 기하학적 비선형 해석)

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 1988
  • A higher order plate bending finite element using cubic in-plane displacement profiles is proposed for geometrically nonlinear analysis of thin and thick plates. The higher order plate bending element has been derived from the three dimensional plate-like continuum by discretization of the equations of motion by Galerkin weighted residual method, together with enforcing higher order plate assumptions. Total Lagrangian formulation has been used for geometrically nonlinear analysis of plates and consistent linearization by Newton-Raphson method has been performed to solve the nonlinear equations. The element characteristics have been computed by, selective reduced integration technique using Gauss quadrature to avoid shear locking phenomenon in case of extremely thin plates. Several numerical examples were solved with FEAP macro program to demonstrate versatility and accuracy of the present higher order plate bending element.

  • PDF

Temperature distribution & heat transfer of rectangular cross section by the higher-order triangular finite element method (고차 삼각형 유한요소에 의한 구형단면의 온도분포와 열전달)

  • 용호택;서정일;조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.24-29
    • /
    • 1981
  • This paper is studied an efficient temperature distribution and heat transfer of two-dimensional rectangular cross-section by the higher-order triangular finite dynamic element and finite difference. This is achieved by employing a discretization technique based on a recently developed concept of finite dynamic elements, involving higher order dynamic correction terms in the associated stiffness and convection matrices. Numerical solution results of temperature distribution presented herein clearly optimum element and show that FEM10 is the most accurate temperature distribution, but heat transfer and computational effort is the most acquired.

  • PDF

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites with Multiple Delamination (다중 층간 분리부가 내재된 복합재 쉘 고차 지그재그 모델의 유한요소 해석)

  • 오진호;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.229-236
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection. which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the buckling problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The accuracy of the present element is demonstrated in the prediction of buckling loads and buckling modes of shells with multiple delaminations. The present shell element should serve as a powerful tool in the prediction of buckling loads and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF