
East Asian Math. J.

Vol. 33 (2017), No. 5, pp. 511–525

http://dx.doi.org/10.7858/eamj.2017.035

AN EXTRAPOLATED HIGHER ORDER CHARACTERISTIC

FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS

Mi Ray Ohm and Jun Yong Shin

Abstract. We introduce an extrapolated higher order characteristic fi-

nite element method to construct approximate solutions of a Sobolev equa-

tion with a convection term. The higher order of convergence in both the
temporal direction and the spatial direction in L2 normed space is estab-

lished and some computational results to support our theoretical results

are presented.

1. Introduction

In this paper, we consider a Sobolev equation with a convection term: Find
u(x , t) defined on Ω× [0, T ] such that

c(x )ut + d(x ) · ∇u−∇ · (a(u)∇u)−∇ · (b(u)∇ut)
= f(x , t, u), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω,

(1.1)

where Ω ⊂ Rm, 1 ≤ m ≤ 3, is a bounded convex domain with its boundary
∂Ω and c,d , a, b, and f are known functions. For the existence, uniqueness,
regularity results, and physical applications of Sobolev equations, we refer to
[2, 3, 4, 20, 23] and the papers cited therein.

To obtain the numerical results for Sobolev equations without a convection
term, we apply many numerical methods, such as classical finite element meth-
ods [1, 6, 10, 11, 12], least-squares methods [9, 17, 18, 24, 25], H1-Galerkin
mixed finite element method [8], or discontinuous finite element methods [13,
14, 21, 22]. But in many cases, a convection term d(x ) · ∇u exists and d(x )
is large. To discretize both the time derivative term and the convection term
effectively, we use a characteristic finite element method which is naturally de-
rived from the physical point of view. And the effectiveness of this method are
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shown in [5, 7]. Gu in [7] and Shi et al [19] introduce a characteristic finite
element method for a Sobolev equation and establish the higher order conver-
gence in the spatial variable and the first order convergence in the temporal
variable for approximate solutions. But the first order convergence in the tem-
poral variable deteriorates the higher order convergence in the spatial variable.
So, Ohm and Shin in [15, 16] introduce a Crank-Nicolson or an extrapolated
Crank-Nicolson characteristic finite element method for the Sobolev equation
to obtain the higher order of convergence in both the spatial direction and the
temporal direction in L2 normed space.

In this paper, we introduce an extrapolated characteristic finite element
method for the Sobolev equation to get the higher order of convergence both
in the temporal variable and in the spatial variable. This method is based on
a backward three-point formula to approximate simultaneously the time deriv-
ative and the convection term and on an extrapolation technique to avoid the
difficulty in solving the nonlinear systems. Our paper is organized as follows:
In Section 2, some assumptions of u(x , t), the conditions of the coefficients of
(1.1) and basic notations are given. In Section 3, finite element spaces and basic
approximation properties are given. In Section 4, we construct characteristic
finite element approximations of u(x , t) and establish the higher order of conver-
gence in L2 and H1 normed spaces. In Section 5, we provide the computational
results to confirm the theoretical results obtained in Section 4.

2. Assumptions and notations

Now we introduce some notations for Sobolev spaces. For an s ≥ 0 and
1 ≤ p ≤ ∞, W s,p(Ω) denote a usual Sobolev space equipped with its norm
‖ · ‖s,p. For our convenience, denote Hs(Ω) instead of W s,2(Ω), and ‖ · ‖, ‖ · ‖∞,
and ‖·‖s instead of ‖·‖0,2, ‖·‖0,∞, and ‖·‖s,2, respectively. Let H s(Ω) = {w =
(w1, w2, . . . , wm) | wi ∈ Hs(Ω), 1 ≤ i ≤ m} be a Sobolev space equipped with

its norm ‖w‖2s =
m∑
i=1

‖wi‖2s and let H1
0 (Ω) = {w ∈ H1(Ω) | w(x ) = 0 on ∂Ω}.

For a given Banach space X and t1, t2 ∈ [0, T ], we introduce the the following
Sobolev spaces with the corresponding norms:

Ws,p(t1, t2;X) =
{
w(x , t) | ‖∂

βw

∂tβ
(·, t)‖X ∈ Lp(t1, t2), 0 ≤ β ≤ s

}
,

where

‖w‖Ws,p(t1,t2;X) =


(∑s

β=0

∫ t2
t1
‖∂

βw
∂tβ

(·, t)‖pXdt
)1/p

, 1 ≤ p <∞
max0≤β≤s esssupt∈(t1,t2)‖∂

βw
∂tβ

(·, t)‖X , p =∞.

And denote Lp(X) and Ws,p(X) instead of L0,p(0, T ;X) and Ws,p(0, T ;X),
respectively.
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For the Sobolev equation (1.1), let the coefficient functions c(x ),d(x ) =
(d1(x ), d2(x ), · · · , dm(x ))T , a(p), b(p) and f(x , t, p) satisfy the following as-
sumptions:

(A1) There exist constants c∗, c
∗, d∗, a∗, a

∗, b∗, and b∗, such that 0 < c∗ ≤
c(x ) ≤ c∗, 0 < |d(x )| ≤ d∗ for all x ∈ Ω and 0 < a∗ ≤ a(p) ≤ a∗, 0 <

b∗ ≤ b(p) ≤ b∗, for all p ∈ R, where |d(x )| =
m∑
i=1

d2
i (x ).

(A2) ap(p), app(p), appp(p), bp(p), bpp(p), and bppp(p) are bounded for all p ∈
R.

(A3) f(x , t, p) is locally Lipschitz continuous in the third variable p, i.e., if

|p− p∗| ≤ K̃ then |f(x , t, p)− f(x , t, p∗)| ≤ K(p, K̃)|p− p∗|. And also
a(p) and b(p) are locally Lipschitz continuous.

Let ν = ν(x , t) be the unit vector in the direction of (d(x ), c(x )) and ψ(x ) =

[c(x )2 + |d(x )|2]
1
2 . Then, we get ∂u

∂ν = c(x)
ψ(x)ut+

d(x)
ψ(x) ·∇u. Therefore the Sobolev

equation (1.1) can be transformed into

ψ(x )
∂u

∂ν
−∇ · (a(u)∇u)−∇ · (b(u)∇ut) = f(x , t, u), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω.

(2.1)

Now we have the following variational formulation of (2.1): Find u(x , t) ∈
H1

0 (Ω) such that

(ψ(x )
∂u

∂ν
, τ) + (a(u)∇u,∇τ) + (b(u)∇ut,∇τ)

= (f(x, t, u), τ), ∀τ ∈ H1
0 (Ω),

u(x , 0) = u0(x ).

(2.2)

3. Finite element spaces and an elliptic projection

Let {Srh} be a finite dimensional subspaces of H1
0 (Ω) satisfying the following

approximation and inverse properties: for φ ∈ H1
0 (Ω) ∩W s,p(Ω), there exist a

positive constant K1 independent of h, φ and r, and a sequence Phφ ∈ Srh such
that for any 0 ≤ q ≤ s and 1 ≤ p ≤ ∞

‖φ− Phφ‖q,p ≤ K1h
µ−q‖φ‖s,p,

where µ = min(r+1, s) and also there exist a positive constant K2 independent
of h and r, such that

‖ϕ‖1 ≤ K2h
−1‖ϕ‖ and ‖ϕ‖∞ ≤ K2h

−m2 ‖ϕ‖, ∀ϕ ∈ Srh.

Now we define bilinear forms A and B on H1
0 (Ω)×H1

0 (Ω) by

A(u : v, w) = (a(u)∇v,∇w), B(u : v, w) = (b(u)∇v,∇w). (3.1)
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By following the idea in [10, 14] and the assumption (A1), we define a differen-
tiable function ũ : [0, T ]→ Srh satisfying

A(u : u− ũ, χ) +B(u : ut − ũt, χ) = 0, ∀χ ∈ Srh,
(ũ(0), χ) = (u0, χ), ∀χ ∈ Srh.

(3.2)

Now let η = u − ũ. The following estimates for η, ηt, ηtt and ηttt are given in
[15, 16].

Lemma 3.1. Let u0 ∈ Hs(Ω), ut, utt, uttt ∈ Hs(Ω), and ut ∈ L2(Hs(Ω)).
Then there exists a constant K, independent of h, such that

(i) ‖η‖+ h‖η‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s),
(ii) ‖ηt‖+ h‖ηt‖1 ≤ Khµ(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s),
(iii) ‖ηtt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s),
(iv) ‖ηttt‖1 ≤ Khµ−1(‖ut‖L2(Hs(Ω)) + ‖u0‖s + ‖ut‖s + ‖utt‖s + ‖uttt‖s),

where µ = min(r + 1, s) and s ≥ 2.

Lemma 3.2. Let u0 ∈ Hs(Ω), u, ut, utt, uttt ∈ L∞(Hs(Ω)) ∩ L∞(W 1,∞(Ω)),
ut ∈ L2(Hs(Ω)) and s ≥ 2. If µ. ≥ 1 + m

2 , then there exists a constant K,
independent of h, such that

max{‖η‖∞, ‖∇η‖∞, ‖∇ηt‖∞, ‖∇ηtt‖∞, ‖∇ηttt‖∞} ≤ K,
where µ = min(r + 1, s).

Throughout this paper, a generic positive constant K depends on the domain
Ω, K̃, and u(x , t), but is independent of the discretization magnitudes of the
spatial and the temporal directions. So any K in the different places does not
need to be the same.

4. The optimal L∞(L2) and L∞(H1) error estimates

Let N be a positive integer, ∆t = T/N , tn = n∆t, and un = u(x , tn) for
0 ≤ n ≤ N . For 1 ≤ n ≤ N − 1, from (2.2) and the definitions of bilinear forms
A and B, we obtain(

ψ(x )
∂un+1

∂ν
, χ
)

+A(un+1 : un+1, χ) +B(un+1 : un+1
t , χ)

= (f(x , tn+1, un+1), χ), ∀χ ∈ Srh,
(4.1)

and similarly, we have(
ψ(x )

∂u(t
1
2 )

∂ν
, χ
)

+A(u(t
1
2 ) : u(t

1
2 ), χ) +B(u(t

1
2 ) : ut(t

1
2 ), χ)

= (f(x , t
1
2 , u(t

1
2 )), χ), ∀χ ∈ Srh.

(4.2)

Let d̃(x ) = d(x)
c(x) , x̌ = x − d̃(x )∆t, x̂ = x − 2d̃(x )∆t, ˇ̌x = x + d̃(x)

2 ∆t,

and ˆ̂x = x − d̃(x)
2 ∆t. Now an extrapolated higher order characteristic finite
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element scheme can be introduced as follows: Find {unh}Nn=0 ∈ Srh such that for
1 ≤ n ≤ N − 1(

c(x )
3
2u

n+1
h − 2ǔnh + 1

2 û
n−1
h

∆t
, χ
)

+A(Eunh ;un+1
h , χ)

+B(Eunh ;
3
2u

n+1
h − 2unh + 1

2u
n−1
h

∆t
, χ)

= (f(x , tn+1, Eunh), χ), ∀χ ∈ Srh,

(4.3)

(
c(x )

ˇ̌u1
h − ˆ̂u0

h

∆t
, χ
)

+A(u
1
2

h ;u
1
2

h , χ) +B(u
1
2

h ;
u1
h − u0

h

∆t
, χ)

= (f(x , t
1
2 , u

1
2

h ), χ), ∀χ ∈ Srh,
(4.4)

and

u0
h(x ) = ũ(x , 0), (4.5)

where unh = unh(x ) for 0 ≤ n ≤ N , ǔnh = unh(x̌ ), ûn−1
h = un−1

h (x̂ ), Eunh =

2unh − un−1
h for 1 ≤ n ≤ N − 1, u

1
2

h = 1
2 (u1

h + u0
h), ˇ̌u1

h = u1
h(ˇ̌x ), and ˆ̂u0

h =

u0
h(ˆ̂x ). Note that (4.3) is based on a three-point backward difference formula

to approximate both the directional and the temporal derivatives and on an
extrapolation technique to avoid the difficulty in solving the nonlinear systems
and (4.4) is based on a Crank-Nicolson difference formula to approximate both
the directional and the temporal derivatives.

For the error analysis, we denote ξn = unh − ũn and ∂tξ
n = ξn−ξn−1

∆t . The
following theorem is the same as Theorem 4.1 in [15].

Theorem 4.1. Let u and {unh} be solutions of (2.2) and (4.3)-(4.5), respec-
tively. In addition to the assumptions of Lemma 3.2, if µ ≥ 1 + m

2 , u ∈
L∞(H3(Ω)), and ∆t = O(h), then

‖∇ξ1‖2 + ∆t(‖∂tξ1‖2 + ‖∇∂tξ1‖2) ≤ K∆t(h2µ + (∆t)4),

where µ = min(r + 1, s).

Theorem 4.2. Under the same assumptions of Theorem 4.1, we have

max
0≤n≤N

[
‖un − unh‖+ h‖∇(un − unh)‖

]
≤ K(hµ + (∆t)2),

where µ = min(r + 1, s).

Proof. To establish this theorem, we prove the following statement by mathe-
matical induction: There exist 0 < h̃ < 1 and 0 < ∆̃t < 1 such that

‖∇ξn‖2 + ∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) ≤ K(h2µ + (∆t)4) (4.6)

for all 0 < h < h̃, 0 < ∆t < ∆̃t, and n = 0, 1, · · · , N . For our convenience, we
abuse the notations such as Eu0

h = 0 and ξ−1 = 0. Since ξ0 = 0, (4.6) trivially
holds for n = 0. And by Theorem 4.1, (4.6) holds for n = 1. Now we assume
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that (4.6) holds with n ≤ l − 1. Notice that ‖ξn‖∞ ≤ K, 0 ≤ n ≤ l − 1. For
1 ≤ n ≤ l − 1, subtract (4.3) from (4.1) to get

(
c(x )

3
2ξ
n+1 − 2ξ̌n + 1

2 ξ̂
n−1

∆t
, χ
)

+A(Eunh : ξn+1, χ)

+B(Eunh :
3
2ξ
n+1 − 2ξn + 1

2ξ
n−1

∆t
, χ)

=
(
c(x )

3
2η
n+1 − 2η̌n + 1

2 η̂
n−1

∆t
, χ
)

−
(
c(x )

3
2u

n+1 − 2ǔn + 1
2 û

n−1

∆t
, χ
)

+A(Eunh : ηn+1, χ)−A(Eunh : un+1, χ)

+B(Eunh :
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
, χ)

−B(Eunh :
3
2u

n+1 − 2un + 1
2u

n−1

∆t
, χ)

+ (f(x , tn+1, Eunh)− f(x , tn+1, un+1), χ)

+
(
ψ(x )

∂un+1

∂ν
, χ
)

+A(un+1 : un+1, χ) +B(un+1 : un+1
t , χ).

(4.7)

Notice that

3

2
ξn+1 − 2ξ̌n +

1

2
ξ̂n−1

=
3

2
(ξn+1 − ξn)− 1

2
(ξn − ξn−1)− 1

2
(ξn−1 − ξ̂n−1)− 2(ξ̌n − ξn).

(4.8)

By applying (4.8) to (4.7), we get(
c(x )

3
2 (ξn+1 − ξn)− 1

2 (ξn − ξn−1)

∆t
, χ
)

+A(Eunh : ξn+1, χ)

+B(Eunh :
(ξn+1 − ξn) + 1

2 [(ξn+1 − ξn)− (ξn − ξn−1)]

∆t
, χ)

=
(
c(x )

2(ξ̌n − ξn) + 1
2 (ξn−1 − ξ̂n−1)

∆t
, χ
)

+
(
c(x )

2(ηn+1 − η̌n)− 1
2 (ηn+1 − η̂n−1)

∆t
, χ
)

+
(
ψ(x )

∂un+1

∂ν
− c(x )

3
2u

n+1 − 2ǔn + 1
2 û

n−1

∆t
, χ
)

+
[
A(Eunh : ηn+1, χ)−A(un+1 : ηn+1, χ)

]
+A(un+1 : ηn+1, χ)

+
[
A(un+1 : un+1, χ)−A(Eunh : un+1, χ)

]

(4.9)
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+
[
B(Eunh :

3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
, χ)

−B(un+1 :
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
, χ)
]

+B(un+1 :
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
− ηn+1

t , χ) +B(un+1 : ηn+1
t , χ)

+B(un+1 : un+1
t −

3
2u

n+1 − 2un + 1
2u

n−1

∆t
, χ)

+
[
B(un+1 :

3
2u

n+1 − 2un + 1
2u

n−1

∆t
, χ)

−B(Eunh :
3
2u

n+1 − 2un + 1
2u

n−1

∆t
, χ)
]

+ (f(x , tn+1, Eunh)− f(x , tn+1, un+1), χ)

≡ Σ12
i=1Ri.

Now denote three terms of the left-hand side of (4.9) by L1, L2 and L3, respec-
tively and choose χ = ∂tξ

n+1 in (4.9). First the lower bounds of L1, L2 and L3

can be estimated as follows:

L1 ≥c∗‖∂tξn+1‖2 +
1

4
(‖
√
c(x )∂tξ

n+1‖2 − ‖
√
c(x )∂tξ

n‖2),

L2 ≥
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

2∆t
(‖
√
a(Eun−1

h )∇ξn‖2 − ‖
√
a(Eunh)∇ξn‖2),

L3 ≥b∗‖∇∂tξn+1‖2 +
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

+
1

4
(‖
√
b(Eun−1

h )∇∂tξn‖2 − ‖
√
b(Eunh)∇∂tξn‖2).

By applying these lower bounds of L1 ∼ L3 to (4.9), we get

c∗‖∂tξn+1‖2 +
1

4
(‖
√
c(x )∂tξ

n+1‖2 − ‖
√
c(x )∂tξ

n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

+ b∗‖∇∂tξn+1‖2

≤ 1

2∆t
((a(Eunh)− a(Eun−1

h ))∇ξn,∇ξn)

+
1

4
((b(Eunh)− b(Eun−1

h ))∇∂tξn,∇∂tξn) +

12∑
i=1

Ri.

(4.10)
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By the induction hypothesis and the fact that ∆t = O(h), we have

‖Eunh − Eun−1
h ‖∞

=‖E(unh − ũn)− E(un−1
h − ũn−1) + Eũn − Eũn−1‖∞

≤∆t(2‖∂tξn‖∞ + ‖∂tξn−1‖∞) +K∆t

≤K∆t.

(4.11)

Hence, by (A4) and (4.11), (4.10) can be estimated as follows:

c∗‖∂tξn+1‖2 +
1

4
(‖
√
c(x )∂tξ

n+1‖2 − ‖
√
c(x )∂tξ

n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

+ b∗‖∇∂tξn+1‖2

≤ K[∆t‖∇∂tξn‖2 + ‖∇ξn‖2] +

12∑
i=1

Ri.

(4.12)

By (A2) and the Taylor expansion, we obtain

R1 =
(
c(x )

2(ξ̌n − ξn) + 1
2 (ξn−1 − ξ̂n−1)

∆t
, ∂tξ

n+1
)

≤ ε‖∂tξn+1‖2 +K
(
‖ξ

n − ξ̌n

∆t
‖2 + ‖ξ

n−1 − ξ̂n−1

∆t
‖2
)

≤ ε‖∂tξn+1‖2 +K(‖∇ξn‖2 + ‖∇ξn−1‖2).

Since

ηn+1 − η̌n = ∆t[ηt(t
n
θ ) +∇η(x̃ 1, t

n) · d̃ ]

and

ηn+1 − η̂n−1 = ∆t[ηt(t
n−1
θ ) +∇η(x̃ 2, t

n−1) · d̃ ]

for some tnθ ∈ (tn, tn+1), tn−1
θ ∈ (tn−1, tn+1), x̃ 1 ∈ (x̌ ,x ) and x̃ 2 ∈ (x̂ ,x ), by

integration by parts, we have

R2 =
(
c(x )

2(ηn+1 − η̌n)− 1
2 (ηn+1 − η̂n−1)

∆t
, ∂tξ

n+1
)

≤ ε‖∇∂tξn+1‖2 + ε‖∂tξn+1‖2 +K(‖ηt‖2L∞(L2) + ‖ηn‖2 + ‖ηn−1‖2).
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By the Taylor expansion, there exist tnθ ∈ (tn, tn+1), tn−1
θ ∈ (tn−1, tn+1), x̌ θi ∈

(x̌ ,x ), and x̂ θi ∈ (x̂ ,x ), 1 ≤ i ≤ 3, satisfying

ψ(x )
∂un+1

∂ν
− c(x )

3
2u

n+1 − 2ǔn + 1
2 û

n−1

∆t

= c(x )un+1
t + d(x ) · ∇un+1

− c(x )
1

∆t

[3

2
un+1 − 2

(
ǔn+1 −∆tǔn+1

t +
(∆t)2

2
ǔn+1
tt − 1

6
(∆t)3ǔttt(t

n
θ )
)

+
1

2

(
ûn+1 − 2∆tûn+1

t +
(2∆t)2

2
ûn+1
tt − 1

6
(2∆t)3ûttt(t

n−1
θ )

)]
= c(x )un+1

t + d(x ) · ∇un+1

− c(x )
1

∆t

[3

2
un+1 − 2

(
un+1 −∆td̃ · ∇un+1 +

1

2
(d̃∆t)2 · ∇2un+1

− 1

6
(d̃∆t)3 · ∇3un+1(x̌ θ1)

)
+ 2∆t

(
un+1
t − d̃∆t · ∇un+1

t +
1

2
(d̃∆t)2 · ∇2un+1

t (x̌ θ2)
)

− (∆t)2
(
un+1
tt − d̃∆t · ∇un+1

tt (x̌ θ3)
)

+
1

3
(∆t)3ǔttt(t

n
θ )

+
1

2

(
un+1 − 2d̃∆t · ∇un+1 +

1

2
(2d̃∆t)2 · ∇2un+1

− 1

6
(2d̃∆t)3 · ∇3un+1(x̂ θ1)

)
−∆t

(
un+1
t − 2d̃∆t · ∇un+1

t +
1

2
(2d̃∆t)2 · ∇2un+1

t (x̂ θ2)
)

+ (∆t)2
(
un+1
tt − 2∆td̃ · ∇un+1

tt (x̂ θ3)
)
− 2

3
(∆t)3ûttt(t

n−1
θ )

]
= c(x )(∆t)2

[1

3
d̃

3
· ∇3un+1(x̌ θ1) + d̃

2
· ∇2un+1

t (x̌ θ2)− 2d̃ · ∇un+1
tt (x̌ θ3)

− 1

3
ǔttt(t

n
θ ) +

2

3
d̃

3
· ∇3un+1(x̂ θ1) + 2d̃

2
· ∇2un+1

t (x̂ θ2)

+ 2d̃ · ∇un+1
tt (x̂ θ3) +

2

3
ûttt(t

n−1
θ )

]
,

where d j · (∇jun+1) =
j∑
l=0

(
j
l

)
dj−l1 dl2

∂jun+1

∂xj−l1 ∂xl2
for j = 2 and j = 3 when m =

2 and we use similar notations when m = 3. Since u(t) ∈ L∞(H3(Ω)) ∩
W 1,∞(H2(Ω)) ∩W 2,∞(H1(Ω)) ∩W 3,∞(L2(Ω)), we get

|R3| ≤ K(∆t)4 + ε‖∂tξn+1‖2.

Note that

ũn+1 − Eũn = ũn+1 − 2ũn + ũn−1 =
1

2
(∆t)2(ũtt(t

n
1 ) + ũtt(t

n−1
1 ))
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holds for some tn1 ∈ (tn, tn+1) and tn−1
1 ∈ (tn−1, tn). Hence we have

‖un+1 − Eunh‖ = ‖un+1 − ũn+1 + ũn+1 − Eũn + Eũn − Eunh‖
≤ ‖ηn+1‖+ ‖ũn+1 − Eũn‖+ ‖Eξn‖
≤ ‖ηn+1‖+K(∆t)2 + 2‖ξn‖+ ‖ξn−1‖.

(4.13)

By (4.13) and Lemma 3.2, the estimate for R4 is given as follows:

R4 = ((a(Eunh)− a(un+1))∇ηn+1,∇∂tξn+1)

≤ K‖∇ηn+1‖∞(‖ηn+1‖+ ‖ξn‖+ ‖ξn−1‖+ (∆t)2)‖∇∂tξn+1‖
≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

By (3.2), R5 +R9 = 0 holds. By (4.13), R6 can be estimated as follows:

R6 = ((a(un+1)− a(Eunh))∇un+1,∇∂tξn+1)

≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

Since

‖∇
(3

2
ηn+1 − 2ηn +

1

2
ηn−1

)
‖∞ ≤

3

2
∆t‖∇ηt‖L∞(L∞) +

1

2
∆t‖∇ηt‖L∞(L∞),

by (4.13) and Lemma 3.2, we get

R7 =
(

(b(Eunh)− b(un+1))∇
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
,∇∂tξn+1

)
≤ K(‖ηn+1‖+ ‖ξn‖+ ‖ξn−1‖+ (∆t)2)‖∇ηt‖L∞(L∞)‖∇∂tξn+1‖
≤ K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4) + ε‖∇∂tξn+1‖2.

By the Taylor expansion, we have

3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
− ηn+1

t =
1

3
(∆t)2ηttt(t

n
θ )− 2

3
(∆t)2ηttt(t

n−1
θ )

for some tnθ ∈ (tn, tn+1) and tn−1
θ ∈ (tn−1, tn+1). So, by Lemma 3.1, we get

R8 = B(un+1 :
3
2η
n+1 − 2ηn + 1

2η
n−1

∆t
− ηn+1

t , ∂tξ
n+1)

≤ ε‖∇∂tξn+1‖2 +K(∆t)4.

By the Taylor expansion and (4.13), the estimates for R10 and R11 can be
obtained as follows:

R10 = B(un+1 : un+1
t −

3
2u

n+1 − 2un + 1
2u

n−1

∆t
, ∂tξ

n+1)

≤ ε‖∇∂tξn+1‖2 +K(∆t)4,

R11 =
(

(b(un+1)− b(Eunh))∇
3
2u

n+1 − 2un + 1
2u

n−1

∆t
,∇∂tξn+1

)
≤ ε‖∇∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).
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Since f is locally Lipchitz continuous in u, by (4.13), we have

R12 = (f(x , tn+1, Eunh)− f(x , tn+1, un+1), ∂tξ
n+1)

≤ ε‖∂tξn+1‖2 +K(‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4).

By applying the estimates for R1 ∼ R12 to (4.12), we get

c∗‖∂tξn+1‖2 +
1

4
(‖
√
c(x )∂tξ

n+1‖2 − ‖
√
c(x )∂tξ

n‖2)

+
1

2∆t
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2) + b∗‖∇∂tξn+1‖2

+
1

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eunh)∇∂tξn‖2)

≤K
[
∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) + ‖∇ξn‖2 + ‖∇ξn−1‖2 + ‖ηt‖2L∞(L∞)

+ ‖ηn‖2 + ‖ηn−1‖2 + ‖ηn+1‖2 + ‖ξn‖2 + ‖ξn−1‖2 + (∆t)4
]

+ 4ε‖∂tξn+1‖2 + 7ε‖∇∂tξn+1‖2.

Since ε is sufficiently small, we obtain

c∗

2
∆t‖∂tξn+1‖2 +

1

4
∆t(‖

√
c(x )∂tξ

n+1‖2 − ‖
√
c(x )∂tξ

n‖2)

+
1

2
(‖
√
a(Eunh)∇ξn+1‖2 − ‖

√
a(Eun−1

h )∇ξn‖2)

+
∆t

4
(‖
√
b(Eunh)∇∂tξn+1‖2 − ‖

√
b(Eun−1

h )∇∂tξn‖2)

+
b∗
2

∆t‖∇∂tξn+1‖2

≤ K∆t
[
∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) + ‖ηn+1‖2 + ‖ηn−1‖2

+ ‖ηn‖2 + ‖ηt‖2L∞(L∞) + ‖∇ξn‖2 + ‖∇ξn−1‖2

+ ‖ξn−1‖2 + ‖ξn‖2 + (∆t)4
]
.

(4.14)

Now we add both sides of (4.14) from n = 1 to l − 1 to get

c∗

2
∆t

l−1∑
n=1

‖∂tξn+1‖2 +
∆t

4
‖
√
c(x )∂tξ

l‖2 +
1

2
‖
√
a(Eul−1

h )∇ξl‖2

+
b∗

2
∆t

l−1∑
n=1

‖∇∂tξn+1‖2 +
∆t

4
‖
√
b(Eul−1

h )∇∂tξl‖2
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≤∆t

4
‖
√
c(x )∂tξ

1‖2 +
1

2
‖
√
a(Eu0

h)∇ξ1‖2 +
∆t

4
‖
√
b(Eu0

h)∇∂tξ1‖2

+K∆t

l−1∑
n=1

{
∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) + ‖ξn‖2 + ‖∇ξn‖2

}
+K∆t

l∑
n=0

{
‖ηn‖2 + ‖ηt‖2L∞(L2) + (∆t)4

}
.

So, by Lemma 3.1 and Theorem 4.1, we have

‖∇ξl‖2 + ∆t{‖∂tξl‖2 + ‖∇∂tξl‖2}

≤K
[
∆t

l−1∑
n=1

{∆t(‖∂tξn‖2 + ‖∇∂tξn‖2) + ‖∇ξn‖2}+ ∆t

l∑
n=0

{h2µ + (∆t)4}
]
.

Hence by Gronwall’s inequality, we obtain

‖∇ξl‖2 + ∆t{‖∂tξl‖2 + ‖∇∂tξl‖2} ≤ K[h2µ + (∆t)4],

which completes the proof of the statement (4.6). By the triangle inequality
and the Poincare’s inequality, we finally obtain ‖ul − ulh‖ ≤ K[hµ + (∆t)2] and
‖∇(ul − ulh)‖ ≤ K[hµ−1 + (∆t)2]. Thus the result of this theorem is true. �

5. Computational results

In this section, we will present some numerical results to verify the conver-
gence order of the higher order extrapolated characteristic FEM proposed in
(4.3)-(4.5). For the sake of simplicity, we consider the Sobolev equation (1.1)
with c(x ) = d(x ) = 1, a(u) = b(u) = 0.001 and Ω = [0, 1] so that (1.1) can be a
convection dominated problem. We construct the approximation of u(x, t) on
the finite element space consisting of the piecewise linear polynomials. For the
sake of convenience, we choose the exact solution u(x, t) first and then compute
f(x, t) or f(x, t, u) satisfying (1.1).

First we will show the convergence order of uh(x) at T = 0.4 to u(x, 0.4) in
the case that f depends only on x and t. Choose the exact solution u(x, t) as
follows:

u(x, t) =

{
(25(x− t− 0.2)(0.6 + t− x))3, 0.2 ≤ x− t ≤ 0.6

0 , otherwise,
(5.1)

and compute f(x, t) = ut + ux − 10−3uxx − 10−3utxx by substituting u(x, t)
defined in (5.1). As we expect from the conclusions of Theorem 4.2, Table 1
shows that the approximations of u at T = 0.4 converge with the order 2 in the
temporal direction as well as the spatial direction. To show the order of conver-
gence, we choose h = 1

20 ,
1
40 ,

1
80 ,

1
160 ,

1
320 consecutively (N = 20, 40, 80, 160, 320

consecutively) and also we choose ∆t = h.
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Table 1. The rate of convergence for the approximate values
uh of u(·, 0.4) when f1(x, t) and ∆t = h

h = ∆t ‖u(·, 0.4)− uh(·, 0.4)‖ convergence order
1/20 0.562766e− 1
1/40 0.191283e− 1 1.56
1/80 0.529704e− 2 1.85
1/160 0.138938e− 2 1.93
1/320 0.341329e− 3 2.03

Next we will show the convergence order of uh(x) in the case that f depends
on u as well as x and t. Now we choose the same exact solution u(x, t) defined
in (5.1), compute f1(x, t) = ut + ux − 10−3uxx − 10−3utxx − u2 by substituting
u(x, t), and let f(x, t, u) = f1(x, t) + u2. Then u(x, t) is the solution of the
following problem:

ut + ux − 10−3utxx − 10−3uxx = f(x, t, u), (x, t) ∈ Ω× (0, 0.4)

u(x, t) = 0, (x, t) = {0, 1} × (0, 0.4)

u(x, 0) = (25(x− 0.2)(0.6− x))3, x ∈ Ω.

We provide the order of convergence at T = 0.4 in Table 2 which verifies our
theoretical result in Theorem 4.2.

Table 2. The rate of convergence for the approximate values
uh of u(·, 0.4) when f(x, t, u) and ∆t = h

h = ∆t ‖u(·, 0.4)− uh(·, 0.4)‖ convergence order
1/20 0.778250e− 1
1/40 0.260070e− 1 1.58
1/80 0.717642e− 2 1.86
1/160 0.188200e− 2 1.93
1/320 0.465709e− 3 2.01

Conclusions. We have introduced an extrapolated higher order characteristic
FEM to approximate the solution u(x, t) of the problem (1.1). We derive the
higher order of convergence in both temporal direction and spatial direction in
L2 normed space. And some numerical results are given to verify the theoretical
analysis.
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