• Title/Summary/Keyword: Higher Order

Search Result 17,979, Processing Time 0.049 seconds

GROWTH AND FIXED POINTS OF MEROMORPHIC SOLUTIONS OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Xu, Jun-Feng;Yi, Hong-Xun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.747-758
    • /
    • 2009
  • In this paper, we investigate the growth and fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives. Because of the restriction of differential equations, we obtain that the properties of fixed points of meromorphic solutions of higher order linear differential equations with meromorphic coefficients and their derivatives are more interesting than that of general transcendental meromorphic functions. Our results extend the previous results due to M. Frei, M. Ozawa, G. Gundersen, and J. K. Langley and Z. Chen and K. Shon.

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams

  • Rahmani, O.;Refaeinejad, V.;Hosseini, S.A.H.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • In this paper, various nonlocal higher-order shear deformation beam theories that consider the size dependent effects in Functionally Graded Material (FGM) beam are examined. The presented theories fulfill the zero traction boundary conditions on the top and bottom surface of the beam and a shear correction factor is not required. Hamilton's principle is used to derive equation of motion as well as related boundary condition. The Navier solution is applied to solve the simply supported boundary conditions and exact formulas are proposed for the bending and static buckling. A parametric study is also included to investigate the effect of gradient index, length scale parameter and length-to-thickness ratio (aspect ratio) on the bending and the static buckling characteristics of FG nanobeams.

ITERATIVE REWEIGHTED ALGORITHM FOR NON-CONVEX POISSONIAN IMAGE RESTORATION MODEL

  • Jeong, Taeuk;Jung, Yoon Mo;Yun, Sangwoon
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.719-734
    • /
    • 2018
  • An image restoration problem with Poisson noise arises in many applications of medical imaging, astronomy, and microscopy. To overcome ill-posedness, Total Variation (TV) model is commonly used owing to edge preserving property. Since staircase artifacts are observed in restored smooth regions, higher-order TV regularization is introduced. However, sharpness of edges in the image is also attenuated. To compromise benefits of TV and higher-order TV, the weighted sum of the non-convex TV and non-convex higher order TV is used as a regularizer in the proposed variational model. The proposed model is non-convex and non-smooth, and so it is very challenging to solve the model. We propose an iterative reweighted algorithm with the proximal linearized alternating direction method of multipliers to solve the proposed model and study convergence properties of the algorithm.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].

Voice Activity Detection employing the Generalized Normal-Laplace Distribution (일반화된 정규-라플라스 분포를 이용한 음성검출기)

  • Kim, Sang-Kyun;Kwon, Jang-Woo;Lee, Sangmin
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.294-299
    • /
    • 2014
  • In this paper, we propose a novel algorithm to improve the performance of a voice activity detection(VAD) which is based on the generalized normal-Laplace(GNL) distribution. In our algorithm, the probability density function(PDF) of the noisy speech signal is represented by the GNL distribution and the variance of the speech and noise of GNL distribution are estimated using higher order moments. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithms.

Analysis of Higher Order Modes of Waveguide Latching Phase Shifter (도파관 래칭 이상기의 고차 모드 해석)

  • 신동만;윤상원;박동철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1145-1151
    • /
    • 1989
  • New method to calculate the characteristics of the dominant and higher order modes of waveguide latching phase shifters are presented. Due to the tensor permeability, E and H fields inside the ferrite are expanded in terms of the LSE and LSM eigenmodes of the dielectric-slab-loaded waveguide. The equivalent coupled transmission line equations on the transverse plane are derived to obtain the dispersion characteristics and the E and H field distributions. Numerical results at X-band are compared with those published previously. The derived field distributions can be used to suppress the higher order modes of the latching phase shifters, so that the phase shift from the dominant mode only contributes the performance of the phase shifters.

  • PDF

SOLVING HIGHER-ORDER INTEGRO-DIFFERENTIAL EQUATIONS USING HE'S POLYNOMIALS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.109-121
    • /
    • 2009
  • In this paper, we use He's polynomials for solving higher order integro differential equations (IDES) by converting them to an equivalent system of integral equations. The He's polynomials which are easier to calculate and are compatible to Adomian's polynomials are found by using homotopy perturbation method. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Several examples are given to verify the reliability and efficiency of the proposed method.

  • PDF

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

ON THE SYMMETRY PROPERTIES OF THE GENERALIZED HIGHER-ORDER EULER POLYNOMIALS

  • Bayad, Abdelmejid;Kim, Tae-Kyun;Choi, Jong-Sung;Kim, Young-Hee;Lee, Byung-Je
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.511-516
    • /
    • 2011
  • In this paper we prove a generalized symmetry relation between the generalized Euler polynomials and the generalized higher-order (attached to Dirichlet character) Euler polynomials. Indeed, we prove a relation between the power sum polynomials and the generalized higher-order Euler polynomials..