• Title/Summary/Keyword: High-pressure injection

Search Result 865, Processing Time 0.029 seconds

A High Pressure Fuel Control and its Injection Characteristics (고압 연료 제어와 분사 특성)

  • Kim, S.H.;Lee, Y.G.;Kim, J.U.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.123-133
    • /
    • 1995
  • An injection control valve(ICV) was designed to control the fuel flow between a common rail and an injector with two commercial solenoids. To improve the performance of ICV, the characteristic method was applied. With this method, the flow characteristics in the ICV and the injector were studied and the parameters which affect the injection characteristics were also studied. From this study, following results were obtained. The injection duration can be controlled and with modifications of the effective valve stroke of ICV, the injection quantity and duration can be reduced to desired amount. Also the injection quantity and pressure can be controlled by reducing the hole size of the injector without the variation of the injection duration. For some conditions, the desired injection characteristics can be obtained by the changes of the valve timing, the effective valve stroke, the open pressure of the injector and the hole size of the injector.

  • PDF

Technology to reduce water ingress for TBM cutterhead intervention

  • Ham, Soo-Kwon;kim, Beom-Ju;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.321-329
    • /
    • 2022
  • Tunnel site where high water pressure is applied, such as subsea tunnel, generally selects the shield TBM (Tunnel Boring Machine) to maintain the tunnel excavation face. The shield TBM has cutters installed, and the cutters wear out during the process of excavation, so it should be checked and replaced regularly. This is called CHI (Cutterhead Intervention). The conventional CHI under high water pressure is very disadvantageous in terms of safety and economics because humans perform work in response to high water pressure and huge water inflow in the chamber. To overcome this disadvantage, this study proposes a new method to dramatically reduce water pressure and water ingress by injecting an appropriate grout solution into the front of the tunnel face through the shield TBM chamber, called New Face Grouting Method (NFGM). The tunnel model tests were performed to determine the characteristics, injection volume, and curing time of grout solution to be applied to the NFGM. Model test apparatus was composed of a pressure soil tank, a model shield TBM, a grout tank, and an air compressor to measure the amount of water inflow into the chamber. The model tests were conducted by changing the injection amount of the grout solution, the curing time after the grout injection, and the water/cement ratio of grout solution. From an economic point of view, the results showed that the injection volume of 1.0 L, curing time of 6 hours, and water/cement ratio of the grout solution between 1.5 and 2.0 are the most economical. It can be concluded that this study has presented a method to economically perform the CHI under the high water pressure.

Spray Characteristics of Air-assisted Vortex Nozzle at Low Pressure Condition (공기보조식 와류 노즐의 저압 분무특성)

  • Kim, Woojin;Subedi, Bimal;Choi, Jang-Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • A nozzle with vortex generator was used to develop the low pressure nozzle with high atomization performance and the nozzle atomized the liquid by centrifugal shear forces. In order to analyze the atomization characteristics, a shadowgraphy method was used and the measurement of droplet size was performed by using laser diffraction analyzer. The liquid injection pressure was fixed as 0.03 bar which is very low pressure and the gas injection pressures were changed from 0 bar to 2.0 bar. As a result, the breakup was achieved at the air injection pressure of 0.25 bar and over. The nozzle with the orifice diameter of 0.4 mm and the orifice gap of 0.25 mm presented small droplet diameters under 50 at the air injection pressure of 0.75 bar.

An experimental study on spray pattern and droplet size distribution of diesel spray (디젤 분무의 분무 형태와 입경 분포에 관한 실험적 연구)

  • 지요한;이종화;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.102-108
    • /
    • 1992
  • To clarify the structure of a diesel spray, a transient non-evaporating diesel spray injected under different ambient pressure and different injection pressure was studied. Spray tip penet- ration and spray angle were measured by taking the high speed shadowgraph of spray and Sauter mean Diameter(SMD) was also measured by light scattering technique at different positions along the spray axis and at different time from the start of injection. The effects of the operating parameters on the spray shape and SMD were investigated. By increasing the injection pressure, the spray tip penetration and the spray angle increased and the change of the ambient pressure also resulted in the considerable change in the shape of the spray. The analysis of SMD measurement showed that the atomization is a process that continues in sp- ace and time. As the injection pressure increases SMD decreases rapidly and with the increa- se of the ambient pressure the atomization process ends faster than the lower ambient press- ure and at lower pressure the atomization process continues to much farther downstream and far afterward.

  • PDF

Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics (분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

A Study on the Behavior of Evaporating Diesel Spray Using LIEF Measurement and KIVA Code

  • Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Yong-Rae;Min, Kyoung-Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2310-2318
    • /
    • 2004
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 400 bar to 800 bar by using a common rail injection system. Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.

An Experimental Investigation on Spray Behavior of Biodiesel and DME on Blended Ratio in High Temperature and Pressure Ambient Conditions (고온 고압 분위기 조건에서 바이오 디젤과 DME의 혼합비에 따른 분무특성에 관한 연구)

  • Bang, Seung-Hwan;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The objective of this work is to analyze the macroscopic behavior of spray and injection characteristics on the DME blended biodiesel at different mixing ratios by using spray visualization and injection rate measurement system. The spray images were analyzed to a spray tip penetration, a spray cone angle and a spray area distribution at various mixing ratio of DME by weight. The influence of different injection pressure and ambient pressure on the fuel spray characteristics are investigated for the various injection parameters. In order to analyze the injection characteristics of test fuels, the fuel injection rate is measured at various blending ratio. The variation of viscosity of the blended fuel by the mixing of DME fuel shows the improved effect of spray developments. Also, it was found that the injection quantities of high blended ratio were larger than that of lower blended fuel. Also, higher blending fuel showed a faster evaporation than that of mixing ratio of test fuel because kinetic viscosity was changed by blending ratio.

Hydrogen Jet Structure and Measurement of Local Equivalence Ratio by LIBs under the Different Injection Pressure (분사 압력에 따른 수소 제트의 형상과 LIBs를 적용한 국부 당량비 계측)

  • Lee, Sanguk;Kim, Jungho Justin;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.27 no.2
    • /
    • pp.84-93
    • /
    • 2022
  • To implement carbon-neutrality in transportation sectors until 2050, hydrogen is considered a promising fuel for internal combustion engines because hydrogen does not contain carbon itself. Although hydrogen does not emit CO2 emission from its combustion process, the low energy density in a volume unit hinders the adoption of hydrogen. Therefore, the understanding of hydrogen jet behavior and measurement of equivalence ratio must be conducted to completely implement the high-pressure hydrogen direct injection. The main objective of this research is feasibility test of hydrogen local equivalence ratio measurement by laser-induced breakdown spectroscopy (LIBs). To visualize the macroscopic structure of hydrogen jet, high-speed schlieren imaging was conducted. Moreover, LIBs has been adopted to validate the feasibility of hydrogen local equivalence ratio measurement. The hydrogen injection pressure was varied from 4 MPa to 8 MPa and injected in a constant volume chamber where the ambient pressure was 0.5 MPa. The increased injection pressure extends the vertical penetration of hydrogen jet. Due to the higher momentum supply when the injection pressure is high, the hydrogen has easily diffused in all directions. As the laser trigger timing has delayed, the low hydrogen atomic emission was detected due to the longer mixture formation time. Based on equivalence ratio measurement results, LIBs could be applied as a methodology for hydrogen local equivalence ratio measurement.

Evaluation of Effectiveness of Vacuum Oral Cleaner Developed for Patients with Limited Mobility

  • Lee, Jae-Hyun;Jung, Ki-Won;Kim, Hee-Kyung;Koo, Ki-Tae;Kim, Sung-Hun
    • The Journal of the Korean dental association
    • /
    • v.54 no.12
    • /
    • pp.1035-1044
    • /
    • 2016
  • Purpose : The purpose of this study was to compare the plaque removal effects of vacuum oral cleaner developed for the patients with limited mobility with those of manual toothbrushes and high pressure injection oral cleaner (dental water jet). Meterials and methods : Thirty human subjects were measured with Patient Hygiene Performance index (PHP index) and O'Leary index before and after the use of toothbrush, high pressure injection oral cleaner and vacuum oral cleaner. These three different oral hygiene methods were conducted with seven-day intermittence. Then the statistical analysis was carried out to define plaque removal rate of three different oral hygiene methods (${\alpha}=.05$). Results : According to the efficacy analysis of plaque removal before and after the oral cleaning using each of three methods, significant reduction in plaque after the treatment compared to the previous state when using toothbrush, high pressure injection oral cleaner, and vacuum oral cleaner was observed (P < 0.001). PHP index of tooth brushing was higher than that of the high pressure injection oral cleaner, while PHP index of vacuum oral cleaner did not show significant difference from either of the other two methods. There was no significance difference in O'Leary index among the three methods. Conclusion : Effect of plaque removal using the vacuum oral cleaner is comparable to that of manual tooth brush or high pressure injection oral cleaner, so it will be helpful for self-oral hygiene care of the patients with limited mobility.

  • PDF

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.