• Title/Summary/Keyword: High-efficiency Modules

Search Result 187, Processing Time 0.029 seconds

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

A New Methodology for Advanced Gas Turbine Engine Simulation

  • M.S. Chae;Y.C. Shon;Lee, B.S.;J.S. Eom;Lee, J.H.;Kim, Y.R.;Lee, H.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.369-375
    • /
    • 2004
  • Gas turbine engine simulation in terms of transient, steady state performance and operational characteristics is complex work at the various engineering functions of aero engine manufacturers. Especially, efficiency of control system design and development in terms of cost, development period and technical relevance implies controlling diverse simulation and identification activities. The previous engine simulation has been accomplished within a limited analysis area such as fan, compressor, combustor, turbine, controller, etc. and this has resulted in improper engine performance and control characteristics because of limited interaction between analysis areas. In this paper, we propose a new simulation methodology for gas turbine engine performance analysis as well as its digital controller to solve difficulties as mentioned above. The novel method has particularities of (ⅰ) resulting in the integrated control simulation using almost every component/module analysis, (ⅱ) providing automated math model generation process of engine itself, various engine subsystems and control compensators/regulators, (ⅲ) presenting total sophisticated output results and easy understandable graphic display for a final user. We call this simulation system GT3GS (Gas Turbine 3D Graphic Simulator). GT3GS was built on both software and hardware technology for total simulation capable of high calculation flexibility as well as interface with real engine controller. All components in the simulator were implemented using COTS (Commercial Off the Shelf) modules. In addition, described here includes GT3GS main features and future works for better gas turbine engine simulation.

  • PDF

Simple Model for Preliminary Design of Hexagrid Tall Building Structure (헥사그리드 고층건물구조의 예비설계를 위한 단순모델)

  • Lee, Han-Ul;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • High-rise building shapes are changing from orthogonal to irregular form and the current trend is to arrange members in geometric grid-patterns at the perimeter of buildings. This study proposes a simple model for the preliminary design of a hexagrid high-rise building. The size of the cross section is set to be different at each module and hexagrid unit, which is different from the previous studies in which all hexagrid members were the same. To examine the effect of hexagrid size on structural performance, 60-story hexagrid buildings with 1-, 2- and 4-story high modules are designed and analyzed. Maximum lateral displacement, steel tonnage, load carrying percentage of perimeter frame and combined strength ratio are compared for 15 buildings. As the lateral load carrying capacity of hexagrid structure was inferior to a diagrid structural system, proper lateral stiffness should be allocated to the core frame in a hexagrid structure. The best ratio of flexural to shear deformation was 4 and larger unit size was better in considering constructional cost and structural efficiency. As the maximum lateral displacements of the buildings were within 84%~108% of the limit, the proposed method seems to be applicable to preliminary design of hexagrid buildings.

Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA (퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계)

  • Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • In this study, we introduce a design of Fuzzy RBFNNs-based digit recognition system using the incremental-PCA in order to recognize the handwritten digits. The Principal Component Analysis (PCA) is a widely-adopted dimensional reduction algorithm, but it needs high computing overhead for feature extraction in case of using high dimensional images or a large amount of training data. To alleviate such problem, the incremental-PCA is proposed for the computationally efficient processing as well as the incremental learning of high dimensional data in the feature extraction stage. The architecture of Fuzzy Radial Basis Function Neural Networks (RBFNN) consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means (FCM) algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, connection weights are used as the extended diverse types in polynomial expression such as constant, linear, quadratic and modified quadratic. Experimental results conducted on the benchmarking MNIST handwritten digit database demonstrate the effectiveness and efficiency of the proposed digit recognition system when compared with other studies.

Area-efficient Interpolation Architecture for Soft-Decision List Decoding of Reed-Solomon Codes (연판정 Reed-Solomon 리스트 디코딩을 위한 저복잡도 Interpolation 구조)

  • Lee, Sungman;Park, Taegeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.59-67
    • /
    • 2013
  • Reed-Solomon (RS) codes are powerful error-correcting codes used in diverse applications. Recently, algebraic soft-decision decoding algorithm for RS codes that can correct the errors beyond the error correcting bound has been proposed. The algorithm requires very intensive computations for interpolation, therefore an efficient VLSI architecture, which is realizable in hardware with a moderate hardware complexity, is mandatory for various applications. In this paper, we propose an efficient architecture with low hardware complexity for interpolation in soft-decision list decoding of Reed-Solomon codes. The proposed architecture processes the candidate polynomial in such a way that the terms of X degrees are processed in serial and the terms of Y degrees are processed in parallel. The processing order of candidate polynomials adaptively changes to increase the efficiency of memory access for coefficients; this minimizes the internal registers and the number of memory accesses and simplifies the memory structure by combining and storing data in memory. Also, the proposed architecture shows high hardware efficiency, since each module is balanced in terms of latency and the modules are maximally overlapped in schedule. The proposed interpolation architecture for the (255, 239) RS list decoder is designed and synthesized using the DongbuHitek $0.18{\mu}m$ standard cell library, the number of gate counts is 25.1K and the maximum operating frequency is 200 MHz.

A Hierarchical CPV Solar Generation Tracking System based on Modular Bayesian Network (베이지안 네트워크 기반 계층적 CPV 태양광 추적 시스템)

  • Park, Susang;Yang, Kyon-Mo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.481-491
    • /
    • 2014
  • The power production using renewable energy is more important because of a limited amount of fossil fuel and the problem of global warming. A concentrative photovoltaic system comes into the spotlight with high energy production, since the rate of power production using solar energy is proliferated. These systems, however, need to sophisticated tracking methods to give the high power production. In this paper, we propose a hierarchical tracking system using modular Bayesian networks and a naive Bayes classifier. The Bayesian networks can respond flexibly in uncertain situations and can be designed by domain knowledge even when the data are not enough. Bayesian network modules infer the weather states which are classified into nine classes. Then, naive Bayes classifier selects the most effective method considering inferred weather states and the system makes a decision using the rules. We collected real weather data for the experiments and the average accuracy of the proposed method is 93.9%. In addition, comparing the photovoltaic efficiency with the pinhole camera system results in improved performance of about 16.58%.

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.

A Plan for Establishing IOT-based Building Maintenance Platform (S-LCC): Focusing a Concept Model on the Function Configuration and Practical Use of Measurement Data (IOT 기반 건축물 유지관리 플랫폼 구축(S-LCC) 방안 : 기능구성과 계측 데이터 활용을 위한 개념 모델을 중심으로)

  • Park, Tae-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.611-618
    • /
    • 2020
  • The reliability of the results of LCC analysis is determined by accurate analytical procedures and energy data from which the uncertainty is removed. Until now, systems that can automatically measure these energy data and produce databases have not been commercialized. Therefore this paper proposes a concept model of an S-LCC platform that can automatically collect and analyze electric energy consumption data of equipment systems using the IOT, which is the core tool in the Fourth Industrial Revolution and operates the equipment system efficiently using the analyzed results. The proposed concept model was developed by the convergence of existing BLCS and IOT and was comprised of five modules: Facility Control Module, LCC Analysis Module, Energy Consumption Control Module, Efficiency Analysis Module, and Maintenance Standard Reestablishment Module. Using the results of LCC analysis deduced from this system, the deterioration condition of an equipment system can be identified in real-time. The results can be used as the baseline data to re-establish standards for the maintenance factor, replacement frequency, and lifetime of existing equipment, and establish new maintenance standards for new equipment. If the S-LCC platform is established, it would increase the reliability of LCC analysis, reduce the labor force for entering data and improve accuracy, and would also change disregarded data into big data with high potential.

Development and Evaluation of Runoff-Sediment Evaluation System and BMPs Evaluation Modules for Agricultural Fields using Hourly Rainfall (시강우량을 이용한 필지별 유출-유사 평가 시스템 및 BMPs 평가 모듈 개발 및 적용성 평가)

  • Kum, Donghyuk;Ryu, Jichul;Choi, Jaewan;Shin, Min Hwan;Shin, Dong Suk;Cheon, Se Uk;Choi, Joong-Dae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.375-383
    • /
    • 2012
  • Soil erosion has been emphasized as serious environmental problem affecting water quality in the receiving waterbodies. Recently, Best Management Practices (BMPs) have been applied at a field to reduce soil erosion and its effectiveness in soil erosion reduction has been monitored with various methods. Although monitoring at fields/watershed outlets would be accurate way for these ends, it is not possible at some fields/watersheds due to various limitations in direct monitoring. Thus modeling has been suggested as an alternative way to evaluate effects of the BMPs. Most models, which have been used in evaluating hydrology and water quality at a watershed, could not reflect rainfall intensity in runoff generation and soil erosion processes. In addition, source codes of these models are not always public for modification/enhancement. Thus, runoff-sediment evaluation system using hourly rainfall data and vegetated filter strip (VFS) evaluation module at field level were developed using open source MapWindow GIS component in this study. This evaluation system was applied to Bangdongri, Chuncheonsi to evaluate its prediction ability and VFS module in this study. The NSE and $R^2$ values for runoff estimation were 0.86 and 0.91, respectively, and measured and simulated sediment yield were 15.2 kg and 16.5 kg indicating this system, developed in this study, can be used to simulate runoff and sediment yield with acceptable accuracies. Nine VFS scenarios were evaluated for effectiveness of soil erosion reduction. Reduction efficiency of the VFS was high when sediment inflow was small. As shown in this study, this evaluation system can be used for evaluation BMPs with local rainfall intensity and variations considered with ease-of-use GIS interface.

Development of component architecture to support IoT management (IoT 및 네트워크 관리 지원을 위한 컴포넌트 아키텍처 개발)

  • Seo, Hee Kyoung
    • Smart Media Journal
    • /
    • v.6 no.2
    • /
    • pp.42-49
    • /
    • 2017
  • It is important to realize automation services by communicating in IoT with humans, objects & objects, and forming a common network. People used web like the most powerful network way to sharing things and communication. Therefore the efficiency method communication between each device and the web in IoT could be different from ones. The best method for high quality software product in web applications is software reuse ; Modules, classes, patterns, frameworks, and business components are reusable elements of various perspectives. Components is plugged with others through well-defined interfaces, which can overcome the operation and complexity of application development. A web-based distributed environment for IoT applications is a standard architecture use information collected from various devices for developing and using applications. For that reason, the network management which manages the constituent resources for the best service control in IoT application is required as a sub-layer support service in most applications as well as individual applications. In this paper, we measure to develop a network management system based not only by components but on heterogeneous internetworks. For procedure this, we clarify a component architecture for classifying and classify also the component needed in the IOT and network domain or order the type of real network management system.