• Title/Summary/Keyword: High-Strength

Search Result 13,483, Processing Time 0.039 seconds

Fire Resistance Assessment of Precast Duct Slab with Fireproof using Hardening Accelerator (경화촉진제를 사용한 내화재 일체형 프리캐스트 슬래브의 화재저항성능 평가)

  • Soon-Wook, Choi;Tae-Ho, Kang;Chulho, Lee;Se Kwon, Kim;Tae Kyun, Kim;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.363-372
    • /
    • 2022
  • Precast concrete is an effective method to increase the construction quality and construction speed by optimizing and making the manufacturing conditions similar. In order to more effectively produce a fireproof material-integrated precast duct slab, the purpose of this study was to determine whether the fire resistance performance of the fireproof layer is maintained when a method of increasing the curing rate using a hardening accelerator is used. As a result of performing a fire resistance performance test on specimens classified according to whether or not the hardening accelerator was included, increase of temperature inside the specimen was high in the specimens using the hardening accelerator, and the section loss of the fireproof layer occurred locally on the surface exposed to fire heating. In conclusion, it is judged that the fireproof layer in the case where the strength at 3th day of age is gained within 1 day curing age using a hardening accelerator does not guarantee sufficient fire resistance performance in the conditions used in this study.

Development of Metal-free Pump and Uni-material Packaging for Cosmetics to Improve Recycling (재활용성 향상을 위한 화장품용 메탈프리 펌프 및 유니소재 패키징 개발)

  • Sang Kyu, Ryu;Ho Sang, Kang;Jae Young, Oh
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.171-174
    • /
    • 2022
  • Cosmetic packing materials tend to be difficult to recycle when discarded due to the cosmetic industry's pursuit of aesthetics, functionality, and high value-added design. Pump packaging, which is widely used for the good preservation and discharge of cosmetics contents, is difficult to be separated and recycled because of a metal spring, which is in charge of pump resilience. In this study, a polypropylene spring was developed to replace the existing metal spring to improve the recyclability of the pump packaging for cosmetics, and was uni-materialized by applying to the cosmetic packing materials with 0.2 ml of discharge amount. In addition, performance test was conducted to verify the equivalence with the existing metal spring pumps as grounds for the commercialization of metal-free uni material pump packaging. The decompression leak test showed no leakage and displayed 14.8~17.5 N of pressing strength, 2.3~8.8 % of deviation in dispensing volume, and 4 occasions of pumping for initial discharge.

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Comparison of Body Weight and Egg Production Ability across Nine Combinations of Korean Indigenous Chicken Breeds (토종닭 종계 9개 조합의 체중 및 산란능력 비교 연구)

  • Kim, Kigon;Park, Byoungho;Jeon, Iksoo;Choo, Hyojun;Cha, Jaebeom
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.161-168
    • /
    • 2021
  • The present study investigated production traits, including body weight, egg production, egg weight, and egg quality in Korean indigenous parent stocks. Parent stocks produced from a nine-combination association from five pure line strains (C, D, F, K, and Y) were used. The body weight analyses results showed that the CY combination had the highest body weight (1,604.9 g) and the DK combination had the lowest (1,424.4 g). The average age at first egg of the nine combinations was 118.6 days; however, that of the YD combination was 111.6 days, making it the fastest growing combination, whereas the DK combination was the slowest, at 126 days. Hen-day egg production was 74% or more for the CF, CK, and DK combinations. The DK combination hens showed excellent persistence in egg laying. Hen-housed egg production exhibited results similar to those of hen-day egg production. Egg weight was significantly higher in the DK combination than in the other combinations and was observed to increase from 20 (43.9 g) to 40 (58.1 g) weeks. The egg quality analyses results showed that the combinations based on the F and K strains had a bright eggshell color, with relatively high egg weights. Eggshell strength and thickness were the highest in the DK combination (3.8 kg/cm2, 0.38 mm). In summary, the CF and DK combinations showed excellent egg production ability and egg quality, while the YC, YD, and YK combinations with the Y strain as the paternal strain exhibited poor performance.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Systematic Review of the Effects of Blood Flow Exercise for Health-care Promotion: A Focus on Korean Domestic Research (헬스케어 증진을 위한 혈류조절 가압 운동의 효과에 대한 체계적 문헌고찰 ; 국내 연구 중심으로)

  • Seo, Tae-Hwa;Kim, Dong-Won
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.447-454
    • /
    • 2020
  • The purpose of this study was to determine the clinical effects of blood flow regulation exercise for improving patients' health care and its usefulness as a rehabilitation model for various diseases by analyzing and examining the existing literature. A literature review of Korean academic journals published over a 10-year period, from 2010 to 2019, was conducted using words such as "blood flow regulation," "blood flow restriction," "low-intensity exercise," and "Kaatsu." Kaatsu is a blood flow regulation exercise developed in 1966 by Dr. Yoshiaki Sato of Japan. It is an efficient and effective exercise method that uses blood flow regulation bands that increase the secretion of growth hormones to develop muscles within a short time, improves blood circulation and metabolism to prevent and improve adult diseases, shortens the rehabilitation period, and improves cardiovascular function. The study participants consisted of 10 patients, of whom four were elderly, four had obesity, one was a stroke patient, and one was a trauma patient. The results of this study show that the blood flow regulation exercise, which is a low-intensity exercise, has the same effect as high-intensity exercise, which supports the evidence that it is a highly efficient exercise method for muscle development and rehabilitation of the elderly, adolescents, and patients with injuries who have difficulty in general exercising. For future studies, further reviews are necessary to verify the effectiveness of the exercise method according to blood flow regulation site and type of disease.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Experimental Study on the Fire Performance of PC Slab by the Bearing Length (걸침길이에 따른 PC 슬래브의 화재성능에 관한 실험적 연구)

  • Park, Siyoung;Kang, Thomas H.K.;Lee, Ho-Wook;Gwak, Si-Young;Park, Jun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.14-22
    • /
    • 2022
  • In this study, a fire test was conducted to evaluate the fire performance of precast concrete (PC) slabs in an outdoor environment in response to the increase in fire incidents caused by the growth of warehouses. Prior to the field fire test, the tensile yield strength of the tendon at elevated temperatures was tested to analyze the mechanical properties. Also, by referring to previous studies, the thermal properties of tendon and the mechanical and thermal properties of concrete were investigated. A field fire test was conducted to analyze the structural and fire performance of two identical slabs with 50 and 150 mm bearing length. As the bearing length increased, deflection and horizontal displacement decreased. The fire test lasted for 200 minutes without the collapse of slabs, validating current codes. Based on the structural performance which maintained even with concrete spalling and rupture of some tendons, the bonded method is assumed to be practical in pre-tensioned PC slabs. The results of fire test are expected to be utilized in evaluating the fire performance of PC slabs in warehouses.

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources (바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성)

  • Jeon, Hoseok;Han, Yosep;Baek, Sangho;Davaadorj, Tsogchuluun;Go, Byunghun;Jeong, Dohyun;Chu, Yeoni;Kim, Seongmin
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

Experimental Evaluation of the Effect of Fine Contents on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대해 세립분 함량이 미치는 영향의 실험적 평가)

  • Kwak, Tae-Young;Lee, Seung-Hwan;Chung, Choong-Ki;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.93-105
    • /
    • 2021
  • In this study, we evaluated the effect of soil fine contents on the formation of underground cavities and ground cave-ins induced by damaged sewer pipes. Simulating the domestic rainfall conditions and ground conditions, model tests were performed under three different fine particle contents conditions (7.5%, 15%, and 25%). By repeating the groundwater supply and drainage twice, ground settlement and the amount of discharged soil were obtained. Also, digital images were taken at regular time intervals during the model tests, and internal displacement and deformation were measured using PIV technique. As the cycles were repeated, the soil with high fine content showed greater resistance to the formation of underground cavities. The ground cave-ins, identified by the collapse of the surface, occurred only when the fine particle content was 15%. It is presumed to be due to the suffusion phenomenon; further study was needed to investigate the effect of fine particle contents on the suffusion phenomenon and associated changes of soil strength.