DOI QR코드

DOI QR Code

Experimental Evaluation of the Effect of Fine Contents on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes

하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대해 세립분 함량이 미치는 영향의 실험적 평가

  • Kwak, Tae-Young (Dept. of Geotechincal Engrg. Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Seung-Hwan (Korea Construction Standard Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Chung, Choong-Ki (Dept. of Civil & Environmental Engrg., Seoul National Univ.) ;
  • Baek, Sung-Ha (Dept. of Geotechincal Engrg. Research, Korea Institute of Civil Engrg. and Building Technology)
  • 곽태영 (한국건설기술연구원 지반연구본부) ;
  • 이승환 (한국건설기술연구원 국가건설기준센터) ;
  • 정충기 (서울대학교 건설환경공학부) ;
  • 백성하 (한국건설기술연구원 지반연구본부)
  • Received : 2021.10.27
  • Accepted : 2021.11.22
  • Published : 2021.11.30

Abstract

In this study, we evaluated the effect of soil fine contents on the formation of underground cavities and ground cave-ins induced by damaged sewer pipes. Simulating the domestic rainfall conditions and ground conditions, model tests were performed under three different fine particle contents conditions (7.5%, 15%, and 25%). By repeating the groundwater supply and drainage twice, ground settlement and the amount of discharged soil were obtained. Also, digital images were taken at regular time intervals during the model tests, and internal displacement and deformation were measured using PIV technique. As the cycles were repeated, the soil with high fine content showed greater resistance to the formation of underground cavities. The ground cave-ins, identified by the collapse of the surface, occurred only when the fine particle content was 15%. It is presumed to be due to the suffusion phenomenon; further study was needed to investigate the effect of fine particle contents on the suffusion phenomenon and associated changes of soil strength.

본 연구에서는 매립토의 세립분 함량이 파손된 하수관으로 인해 유발되는 지하 공동 및 지반함몰에 미치는 영향을 평가했다. 국내 강우 조건 및 지반 조건을 모사하였으며, 서로 다른 세 가지 세립분 함량(7.5%, 15%, 25%)을 적용해 지반함몰 모사시험을 수행했다. 모형지반을 조성한 뒤 하수관 손상부를 모사한 부분을 통해 지하수를 유입하고 배출시키는 과정을 두 차례 반복하며, 지표면 침하량 및 배토량을 측정했다. 또한 모형시험 중에 일정 시간 간격으로 디지털 이미지를 촬영하고 이를 PIV 기법을 통해 분석하여 내부 변위 및 변형(지하 공동 형성 과정)을 측정하였다. 시험 결과, 지하수 유입 및 배출 단계가 반복됨에 따라, 세립분 함량이 높을수록 배토량이 적고 지하 공동 형성이 억제되는 것으로 나타났다. 다만, 지표면 붕괴로 확인되는 지반함몰은 세립분 함량이 15%인 경우에만 발생했다. 이는 배토된 흙의 세립분 함량 변화를 통해 서퓨전(suffusion) 현상에 기인한 것으로 분석되어, 세립분 함량이 서퓨전 현상 발현에 미치는 영향과 이에 따른 지반 강도 변화에 대한 추가연구가 필요함을 확인했다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 (21주요-대1-임무) 지하공간 정보 정확도 개선 및 매설관 안전관리 기술개발(2/3)의 지원으로 수행되었습니다. 또한 본 연구는 2017년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원(과제번호 : 2015R1A2A1A01007980)을 받아 수행되었습니다. 이에 감사의 뜻을 표합니다.

References

  1. Adrian, R. (1991), "Particle-imaging Techniques for Experimental Fluid Mechanics", Annual Review of Fluid Mechanics, Vol.23, pp. 261-304. https://doi.org/10.1146/annurev.fl.23.010191.001401
  2. Alshibli, K. A. and Akbas, I. S. (2007), "Strain Localization in Clay: Plane Strain Versus Triaxial Loading Conditions", Geotechnical and Geological Engineering, Vol.25, pp.45-55. https://doi.org/10.1007/s10706-006-0005-4
  3. Bae, Y., Shin, S.,Won, J., and Lee, D. (2016), "The Road Subsidence Conditions and Safety Improvement Plans in Seoul", Working paper, The Seoul Institute.
  4. Brinkmann, R., Parise, M., and Dye, D. (2008), "Sinkhole Distribution in a Rapidly Developing Urban Environment: Hillsborough County, Tampa Bay area, Florida", Engineering Geology, Vol.99, pp.169-184. https://doi.org/10.1016/j.enggeo.2007.11.020
  5. Caramanna, G., Ciotoli, G., and Nisio, S. (2008), "A Review of Natural Sinkhole Phenomena in Italian Plain Areas", Natural Hazards, Vol.45, pp.145-172. https://doi.org/10.1007/s11069-007-9165-7
  6. Douglas, K. J., Fell, R., Peirson, W. L., and Studholme, H. (2019), "Experimental Investigation of Global Backward Erosion and Suffusion of Soils in Embankment Dams", Canadian Geotechnical Journal, Vol.56, pp.789-807. https://doi.org/10.1139/cgj-2018-0088
  7. Environmental Prediction Research Institute (2017), "A study on the improvement plan for the heavy rain warning announcement standard considering the hourly rainfall intensity (in Korean)", Technical Report.
  8. Guarino, P. M. and Nisio, S. (2012), "Anthropogenic Sinkholes in the Territory of the City of Naples (Southern Italy)", Physics and Chemistry of the Earth, Vol.49, pp.92-102. https://doi.org/10.1016/j.pce.2011.10.023
  9. Guo, S., Shao, Y., Zhang, T., Zhu, D.Z., Asce, M., and Zhang, Y. (2013), "Physical Modeling on Sand Erosion around Defective Sewer Pipes under the Influence of Groundwater", Journal of Hydraulic Engineering, Vol.139, pp.1247-1257. https://doi.org/10.1061/(asce)hy.1943-7900.0000785
  10. Indiketiya, S., Jegatheesan, P., and Pathmanathan, R. (2017), "Evaluation of Defective Sewer Pipe Induced Internal Erosion and Associated Ground Deformation Using Laboratory Model Test", Canadian Geotechnical Journal, Vol.54, pp.1184-1195. https://doi.org/10.1139/cgj-2016-0558
  11. Japan Road Association (1990), "Earth works manual".
  12. Kim, J., Woo, S.I., and Chung, C. (2017), "Assessment of Nonuniform Deformation during Consolidation with Lateral Drainage Using Particle Image Velocimetry (PIV)", KSCE Journal of Civil Engineering, Vol.22, pp.520-531. https://doi.org/10.1007/s12205-017-0707-6
  13. Kuwano, R., Horii, T., Yamauchi, K., and Kohashi, H. (2010), "Formation of Subsurface Cavity and Loosening due to Defected Sewer Pipes", Japanese Geotechnical Journal, Vol.5, pp.349-361. https://doi.org/10.3208/jgs.5.349
  14. Kuwano, R., Sato, M., and Sera, R. (2010), "Study on the Detection of Underground Cavity and Ground Loosening for the Prevention of Ground Cave-in Accident", Japanese Geotechnical Journal, Vol.5, pp.349-361. https://doi.org/10.3208/jgs.5.349
  15. Kwak, T. Y., Woo, S. I., Kim, J., and Chung, C. K. (2019), "Model Test Assessment of the Generation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes", Soils and Foundations, Vol.59, pp.586-600. https://doi.org/10.1016/j.sandf.2018.12.011
  16. Kwak, T. Y., Woo, S. I., Chung, C. K., and Kim, J. (2020), "Experimental Assessment of the Relationship between Rainfall Intensity and Sinkholes Caused by Damaged Sewer Pipes", Natural Hazards and Earth System Sciences, Vol.20, pp.3343-3359. https://doi.org/10.5194/nhess-20-3343-2020
  17. Kwon, O. S. (1998), "Experimental Study on the Shear Strength and Deformation Characteristics of Weathered Soil", Doctoral Thesis, Seoul National University.
  18. Lee, H. and Lee, I. (2009), "A Study for Unsaturated-Character of Weathered Granite Soil in Korea", Journal of the Korean Geoenvironmental Society, Vol.10, pp.13-20.
  19. Lin, K. and Akihiro, T. (2014), "Experimental Investigations on Suffusion Characteristics and its Mechanicalconsequences on Saturated Cohesionless Soil", Soils and Foundations, Vol.54, pp.713-730. https://doi.org/10.1016/j.sandf.2014.06.024
  20. Martinotti, M. E., Pisano, L., Marchesini, I., Rossi, M., Peruccacci, S., Brunetti, M. T., Melillo, M., Amoruso, G., Loiacono, P., Vennari, C., Vessia, G., Trabace, M., Parise, M., and Guzzetti, F. (2017), "Landslides, Floods and Sinkholes in a Karst Environment: the 1-6 September 2014 Gargano Event, Southern Italy", Natural Hazards and Earth System Sciences, Vol.17, pp.467-480. https://doi.org/10.5194/nhess-17-467-2017
  21. Ministry of Environment of Korea (2010), "Technical Standard for Construction of Sewer Pipes".
  22. Mukunoki, T., Kumano, N., Otani, J., and Kuwano, R. (2009), "Visualization of Three Dimensional Failure in Sand due to Water Inflow and Soil Drainage from Defective Underground Pipe Using X-Ray CT", Soils and Foundations, Vol.49, pp.959-968. https://doi.org/10.3208/sandf.49.959
  23. Mukunoki, T., Kumano, N., and Otani, J. (2012), "Image Analysis of Soil Failure on Defective Underground Pipe due to Cyclic Water Supply and Drainage Using X-ray CT", Frontiers of Structural and Civil Engineering, Vol.6, pp.85-100. https://doi.org/10.1007/s11709-012-0159-5
  24. National Disaster Management Institute of Korea (2014), "Possibility of Manhole Cap Removal by Heavy Rainfall", Ministry of Security and Public Administration of Korea Press Releases.
  25. Park, B. K. and Lee, K. C. (1999), "Evaluation Methods of Weathering Degree for Korean Decomposed Granite Soils", Journal of the Korean geotechnical society, Vol. 15, pp. 127-140.
  26. Rogers, C. (1986), "Sewer Deterioration Studies: The Background to the Structural Assessment Procedure in the Sewerage Rehabilitation Manual".
  27. Sato, M. and Kuwano, R. (2015), "Influence of Location of Subsurface Structures on Development of Underground Cavities Induced by Internal Erosion", Soils and Foundations, Vol.55, pp.829-840. https://doi.org/10.1016/j.sandf.2015.06.014
  28. Shire, T., O'Sullivan, C., Hanley, K.J., and Fannin, R.J. (2014), "Fabric and Effective Stress Distribution in Internally Unstable Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol.140, No.12, pp.1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000996
  29. Skempton, A. W. and Brogan, J. M. (1991), "Experiments on Piping in Sandy Gravels", Geotechnique, Vol.44, pp.449-460. https://doi.org/10.1680/geot.1994.44.3.449
  30. Tang, Y., Zhu, D.Z., and Chan, D.H. (2017), "Experimental Study on Submerged Sand Erosion through a Slot on a Defective Pipe", Journal of Hydraulic Engineering, Vol.143, pp.1-14.
  31. Taylor, H. (2016), "Assessing the Potential for Suffusion in Sands Using x-ray Micro-CT Images", Doctoral Thesis, Imperial College London.
  32. White, D. J. and Take, W. A. (2002), "GeoPIV: Particle Image Velocimetry (PIV) Software for Use in Geotechnical Testing", Cambridge University, Rep., 322, 15, CUED/D-SOILS/TR322.
  33. White, D. J., Take, W. A., and Bolton, M. D. (2003), "Soil Deformation Measurement using Particle Image Velocimetry (PIV) and Photogrammetry", Geothechnique, Vol.53, pp.619-631. https://doi.org/10.1680/geot.2003.53.7.619
  34. Yokota, T., Fukatani, W., and Miyamoto, T. (2012), "The Present Situation of the Road Cave in Sinkholes Caused by Sewer Systems".