• Title/Summary/Keyword: High temperature misfiring

Search Result 14, Processing Time 0.026 seconds

A Study on the Improvement of the High Temperature Misfiring in AC PDP (AC PDP의 고온 오방전 개선에 관한 연구)

  • Choi, Joon-Young;Ham, Myung-Soo;Park, Chung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1125-1131
    • /
    • 2004
  • Misfiring is usually observed at high ambient temperature in plasma display panel (PDP). This leads to bad image quality and limits the productivity of PDP industry. In this paper, experimental observations and improvement on the misfiring at high ambient temperature have been studied. In order to reduce the high ambient temperature misfiring different slope of ramp erase pulse corresponding to the temperature are applied. The experimental results show that the suggested method is quite effective for reducing the high temperature misfiring phenomena.

Effect of Working Gas Pressure on Misfirng of ac PDP at High Ambient Temperature

  • Ryu, Jae-Hwa;Choi, Joon-Young;Kim, Dong-Hyun;Kim, Joong-Kyun;Kim, Young-Kee;Lee, Ho-Jun;Park, Chung-Hoo
    • Journal of Information Display
    • /
    • v.4 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • One of the important problems in ac PDP in recent years is the misfiring of ac PDP at high ambient temperatures which consequently degrades the image quality of the ac PDP. This may be due to the change of working gas pressure and/or MgO surface characteristics at high ambient temperatures. This paper deals with the effect of working gas pressure on the misfiring of ac PDP at high ambient temperature. From this study, we found that the main cause of the misfiring at high ambient temperature is the increase in discharge firing voltage induced by increased working gas pressure

A Study on the Reduction of the High temperature misfiring in AC PDP (AC PDP의 고온오방전 개선에 관한 연구)

  • Park, Cha-Soo;Choi, Joon-Young;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-June;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1755-1758
    • /
    • 2004
  • Misfiring is often observed during the high temperature quality assurancetest of plasma display panel. This limits the productivity of PDP industry. In this paper, experimental observations on the misfiring at high panel temperature have been performed through time dependent discharge light output and static margin measurement. For the high temperature condition, firing voltage increment is found in both surface and facing discharges. This in turn increases lime lag in address discharge, and results m increment of misfiring probability. In order to reduce this kind of misfiring, a new method that applies automatically different slope of ramp erasing pulse on the common electrode according to temperature variation is proposed. The experimental results show that controlling the slope of ramp erasing pulse is quite effective for compensating temperature-dependent variation of reset and address discharge.

  • PDF

Compensation of Addressing Time at High Temperature in ac PDP.

  • Choi, Joon-Young;An, Jung-Soo;Kim, Hun-Hee;Lee, Ho-Jun;Lee, Hea-Jun;Kim, Dong-Hyun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.164-170
    • /
    • 2004
  • Misfiring is often observed during the high temperature quality assurance test of plasma display panel. This limits the productivity of PDP industry. In this paper, experimental observations on the misfiring at high panel temperature have been performed through time dependent discharge light output and static margin measurement. For the high temperature condition, firing voltage increment is found in both surface and facing discharges. This in turn increases time lag in address discharge, and results in increment of misfiring probability. In order to reduce this kind of misfiring, a new method that applies automatically different slope of ramp erasing pulse on the common electrode according to temperature variation is proposed. The experimental results show that controlling the slope of ramp erasing pulse is quite effective for compensating temperature-dependent variation of reset and address discharge.

  • PDF

Study of AC-PDP's Discharge Characteristics with Variation time and Temperature in High Xe contents

  • Kim, Hyun-Gyu;Lee, Ho-Jun;Kim, Dong-Hyun;Park, Chung-Hoo;Cho, Sung-Yong;Ha, Chang-Seung;Wi, Sung-Suk;Sim, Choung-Hwan;Lee, Hae-June
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.732-735
    • /
    • 2009
  • In this paper, high Xe(Ne+Xe 10%, 20%, 30%) AC-PDP's discharge characteristics according to aging time were studied. The static margin, Vt close curve, discharge time lag was measured for experiments. According to increase of Xe partial pressure, the static margin and luminance was increased. As the result of analysis for misfiring probability, the misfiring is frequently occurred in accordance with increasing of aging time. To improve misfiring, we proposed 3Reset waveform and achieved misfiring probability which was improved.

  • PDF

A Study on the Compensation of Temperature-Dependent Misfiring in AC PDP by the progressively increasing Address Voltage Method (AC PDP의 순차 증가 Address 전압 방식에 의한 고온 오방전 대책에 관한 연구)

  • Kim, J.Y.;Lee, S.J.;Kwon, B.D.;Kim, D.H.;Lee, H.J.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1623-1627
    • /
    • 2002
  • If the ambient temperature rises in AC PDP, some of the discharged cells arc turned off because of the addressing failure. Particularly, the addressing failure at the last scan line is more serious than at the first scan line. The failure is accompanied with delay of the address discharge and reduction of total charge involved. In order to compensate this kind of misfiling, the progressively increasing address voltage waveform is used instead of constant one. In this method, we found that the total charge and address time at the last scan line are similar to those of the first line. As a result, we can have stable discharge without misfiring even at the high ambient temperature.

  • PDF

A Study on the Improvement of the Low Temperature Address Discharge Time Lag of High-Xe Content AC PDP (AC PDP의 저온에서 어드레스 방전 지연 시간 개선에 관한 연구)

  • Kim, Ji-Yong;Kim, Sun;Lee, Seok-Hyun;Lee, Jeong-Hae;Kim, Jun-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2156-2159
    • /
    • 2005
  • ADS(Address Display Period Separation) driving method has been considered to be the most appropriate driving technique for AC PDP. ADS driving method is composed of reset, address, sustain and erase period. Therefore, a long time should be allocated to an address period, which results in a reduction of brightness. To realize a high luminance and high picture quality, it is necessary to high speed addressing. However, address discharge time lag increases as the temperature decreases, which can cause the misfiring and low picture quality In this paper, the electric field effect and priming particle effect are investigated in order to reduce the address discharge time lag at low temperature. Address discharge time lag was reduced effectively when the priming particles are provided.

  • PDF

Study on the Address Discharge Characteristics for the Improvement of the Mis-firing Problem in AC PDP (AC PDP의 오방전 개선을 위한 어드레스 방전 특성 연구)

  • Jeon, Won-Jae;Kim, Dong-Hun;Lee, Seok-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1151-1156
    • /
    • 2009
  • Unstable sustain discharges can occur at the bottom cells of the panel at high temperature. To solve this problem, the wall charge variation during an address period was investigated. A test panel of 7.5 inch XGA level was used and one green cell was measured. In order to realize operating condition equal to that of the bottom cells of 50 inch panel, the addressing stress pulses are applied. It seems that the resultant wall charge loss during address period increased with increase of stress time, temperature, pressure and Xe %. Wall charge loss increases with potential difference between scan electrode and address electrode, therefore wall charge loss can be minimized by the increase of scan voltage during address period.

Reset Waveform Generation Circuit Adapting To Temperature Change (온도 적응형 PDP RESET 파형 발생회로의 개발)

  • Shin Min-Ho;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.587-591
    • /
    • 2005
  • Driving Waveform of AC PDP in reset periode is increased and decreased with constant slope to improve dark room contrast ratio and image quality. But the slope and magnitude of ramp waveform are related to strong and weak discharge with temperature change in AC PDP. So this paper proposes a methods of changing the slope and magnitude of ramp waveform during reset periode according to temperature change in AC PDP. Experimental variable factors ire chosen to setup slope, setdown slope, and -Vy voltage magnitude in Y sustain electrode. The proposed methods are expected to compensate for effect of the temperature change, causing misfiring in high and low temprature, with varing the slope and magnitude of ramp voltage during reset period and improve image quality.

A study on ignition delays of sprays using a shock tube (충격파관을 이용한 분무연료의 착화지연에 관한 연구)

  • 정진도;류정인;수곡행부
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.48-56
    • /
    • 1989
  • A shock tube technique was developed in which a freely falling droplets column produced by an ultrasonic atomizer was ignited behind reflected shock. In the present study, the effects of turbulent mixing on the ignition delay of a cetane was decided, also, ignition process was investigated. For the purpose of disturbance of droplets column and mixing, authors installed turbulent lattice in shock tube. Usually, the ignition delay is so called Arrhenius plot which found break point in the Arrhenius plot on the high temperature side. The rate of misfiring increased rapidly below 1080K, but ignition took place from 838k and luminous flame was seen to spread over the whole section by turbulent lattice. Length, from end plate to turbulent lattice, was varied with 60,40,20mm. Also, ignition process was detected by Photo transistor. As a result, it was found that physical factors changed ignition delay greatly and turbulent mixing had a considerable effects in the ignition process.

  • PDF