• 제목/요약/키워드: High temperature heating

검색결과 1,675건 처리시간 0.033초

고속 비행체 전자 장비의 안전성 예측을 위한 열해석 모델 구축 (The Development of Thermal Model for Safety Analysis on Electronics in High-Speed Vehicle)

  • 이진관;이민정;황수권
    • 한국항공우주학회지
    • /
    • 제49권5호
    • /
    • pp.437-446
    • /
    • 2021
  • 비행체의 속도가 빨라질수록, 비행 시 발생하는 공력 가열이 커진다. 고속 비행체의 속도가 빨라지면서 비행체의 외피는 수백 ℃까지 가열되기도 하며, 동시에 동체 내부의 전자장비들도 함께 가열되어 상대적으로 사용온도가 낮은 전자장비들의 열적 안전성이 위협받기 시작하였다. 이에 따라 개발 단계에서 전자장비의 온도 예측 및 외부시스템을 이용한 온도 조절 등 장비의 열적 안전성을 예측하고, 이를 확보하기 위한 다양한 시도가 있었다. 본 논문에서는 일회성 고속 비행체 내 장비의 열적 안전성을 예측할 수 있는 열 해석 모델을 구축하는 기술을 개발하였다. 장비 내부의 열전달 특성을 파악하기 위한 간단한 지상 모사실험을 수행하였고, 그 결과를 바탕으로 열전달 특성을 모사한 열 해석모델을 구축하였다. 이 기술을 활용하여 장비 열 해석 모델을 구축한다면, 비행 시장비 내부 구성품별 온도 변화를 예측할 수 있고, 더 나아가 열에 가장 취약한 특정 소자의 온도를 예측할 수 있기 때문에 더 정밀한 열적 안전성 예측이 가능하다.

학교(學校) 교실(敎室)의 실내환경(室內環境) 실태(實態) 조사(調査) 연구(硏究) - 서울시 한성여중.고교(漢城女中.高校) 사례(事例)를 중심(中心)으로 - (Field Study on the Classroom Environment at School - Case study of Hansung Girls' Middle & High School In Seoul City -)

  • 김강환;이현영
    • 교육시설
    • /
    • 제7권3호
    • /
    • pp.5-14
    • /
    • 2000
  • The purpose of this study is to analyze the environmental characteristics of Hansung Girls' Middle & High School located on the northern slope of Mt. Naksan in Seoul but sited at different aspects. The measured temperature and illumination in March, July and December were analysed. The proportion of window size and questionaries were used also. The results of observation are as follows: (1) The temperature of the southward classrooms was $3.6^{\circ}C$ higher than eastward or westward classrooms in March, but the difference of the both values in July were only $0.3^{\circ}C$ in the average. (2) The temperatures in December decreased in the order of aspects: southward, westward and eastward. (3) The highest values for illumination appeared in the classroom faced to the south and the values decreased from westward to eastward. (4) Temperatures and illumination were varied not only with the aspect but also with the number of story and the proportion of the window size. However, the heating facilities and illuminators are installed evenly without considering the condition of the buildings. The heating facilities should be installed differently according to the direction and height of the story of the building. The heating facilities should be installed sparsely for the classrooms faced southward, and more densely near the hallway side to achieve satisfaction of students and to save expenses of heating. It will be better that electric power switches for window side have to be set separately from hallway side. Improvement of the condition of illumination and temperatures will help students to promote their health and learning.

  • PDF

고온을 받은 석회암 골재의 습도경시변화에 따른 체적거동 (Volume Change Caused from the Moisture Change in the Limestone Material Pressured under High Temperature)

  • 풍해동;손호정;허영선;한민철;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.111-113
    • /
    • 2011
  • This study investigated about how much the limestone's volume was changed as time passed while maintaining a certain level of moisture condition in the limestone material for concrete under high temperature. The result is summarized as follows: It was appeared that the limestone material under high temperature emitted some CO2 resulting from the decarboxylation, so that as the heating temperature was increased, the limestone's length change rate was decreased. In the leave time change after heating the stone, the both conditions of 50% and 100% made the limestone create Ca(OH)2 using some H2O. So it was appeared that as time passed, the limestone's length change rate first increased because of its volume expansion, but the rate was reduced after the limestone material was crumbled.

  • PDF

Numerical Simulation on Self-heating for Interlayer Tunneling Spectroscopy in $Bi_2Sr_2CaCu_2O_{8+x}$

  • Park, Jae-Hyun;Lee, Hu-Jong
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.18-22
    • /
    • 2007
  • For interlayer tunneling spectroscopy using a small stack of $Bi_2Sr_2CaCu_2O_{8+x}$ (Bi-2212) intrinsic junctions in a high-bias range, large self-heating takes place due to the poor thermal conductivity of Bi-2212. In this study, we numerically estimate the self-heating around a Bi-2212 sample stack for I-V or dI/dV-V measurements. Our results show that the temperature discrepancy between the Bi-2212 sample stack and top Au electrodes due to bias-induced self-heating is small enough along the c-axis direction of Bi-2212. On the other hand, the lateral temperature discrepancy between the sample stack and the Bi-2212 on-chip thermometer stack can be as large as ${\sim}20\;K$ for the highest bias required to observe the pseudogap hump structure. We thus suggest a new in-situ ac thermometry, employing the Au current-bias electrode itself deposited on top of the sample stack as the resistive thermometer layer, which is supposed to allow safe temperature measurements for the interlayer tunneling spectroscopy.

  • PDF

워킹코일 온도 및 제어 속응성을 고려한 All-Metal Domestic Induction Heating 제어 시스템 설계 (Design of Control System for All-Metal Domestic Induction Heating Considering Temperature and Quick-Response)

  • 박상민;장은수;주동명;이병국
    • 전력전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.199-207
    • /
    • 2018
  • In this paper, an all-metal domestic induction heating (IH) system that can quickly identify ferromagnetic and non-ferromagnetic pots considering temperature changes in the working coil is designed. Load modeling is performed after analyzing the parameters of the pot material and the central misalignment of the working coil. To improve the performance and stability of the all-metal IH cooking heater, a power curve-fitting model is used to design a control system that quickly responds to load parameter fluctuations. In addition, a power control algorithm is established to compensate for the reference value by reflecting the increase in working coil temperature during heating of the non-ferromagnetic pot. The validity of the proposed control algorithm for the all-metal IH is verified by experiments using a 3.2 kW all-metal IH cooking heater.

알루미늄합금의 열간 액압성형법 성형성에 대한 가열조건의 영향도 분석 (The Effect of the Heating Conditions on the Warm Hydro-Formability of the Alumium Alloys)

  • 김봉준;박광수;류종수;손성만;문영훈
    • 열처리공학회지
    • /
    • 제18권3호
    • /
    • pp.172-176
    • /
    • 2005
  • Modern automobiles are built with a steadily increasing variety of materials and semifinished products. The traditional composition of steel sheet and cast iron is being replaced with other materials such as aluminum and magnesium. But low formability of these materials has prevented the application of the automotive components. The formability can be enhanced by conducting the warm hydroforming using induction heating device which can raise the temperature of the specimen very quickly. The specimen applied to the test is A6061, A7075 extruded tubes which belong to the age-hardenable aluminum alloys. But in the case of A6061 age hardening occurs at room temperature or at elevated temperatures before and after the forming process. In this study the effects of the heating condition such as heating time, preset temperature, holding time during die closing and forming time on the hydroformability are analyzed to evaluate the phenomena such as dynamic strain hardening and ageing hardening at high temperatures after the hydroforming process.

고온가열 및 하중재하에 따른 초고강도 콘크리트의 역학적 특성 평가 (Evaluation on Mechanical Properties of Ultra High Strength Concrete with Heating and Loading)

  • 김민정;최경철;윤민호;함은영;미야우치 히로유키;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.34-35
    • /
    • 2013
  • In this study, the ultra high strength concrete which have 80, 130, 180MPa took the heat from 20℃ to 700℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조 (Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing)

  • 김연욱;윤영목
    • 한국재료학회지
    • /
    • 제18권3호
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

Sludge Pellet의 NOx제거특성에 미치는 온도의 영향 (Effect of heating temperature to remove NOx by sludge pellet)

  • 김영주;박재윤;박홍재;송원섭;박상현;배명환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.922-926
    • /
    • 2002
  • In this paper, in order to investigate the catalytic effect of the sludge exhausted from waterworks as heating temperature for NOx removal, we measure NO, $NO_2$ concentration as increasing temperature of sludge pellets and applying high voltage to sludge pellets in a quartz-glass reactor at the same time. NO initial concentration is 100ppm balanced with air gas in a mixing chamber. The gas flow is 5[l/min] and the heating temperature of sludge pellets in a quartz-glass reactor is adjusted from $200[^{\circ}C]$ $400[^{\circ}C]$ to investigate the effect of sludge pellets for removal NOx$(NO+NO_2)$ as increasing temperature. $BaTiO_3$ pellets is filled in a packed-bed reactor for corona discharge to measure how much NOx$(NO+NO_2)$ is removed after generating $NO_2$ from the packed-bed reactor. AC[60Hz] voltage is supplied to the reactor for discharge. In the result, $NO_2$ concentration is decreased by sludge pellets without heating temperature for sludge pellets in case of sludge pellets done heat treatment, however NO concentration is almost the same to be compared NO initial concentration. As increasing heating temperature for sludge pellets, $NO_2$ adsorbed on the sludge surface done heat treatment is converted to NO by the thermal energy, so NO concentration is extremely increased by reduction decomposition of $NO_2$. Finally, We think the sludge is possible to use for reduction catalysts, however we need to study more about the possibility and endurance of sludge as catalysts for NOx removal.

  • PDF

고주파유도 급속 금형가열 과정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold)

  • 손동휘;서영수;박근
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.