• Title/Summary/Keyword: High sludge content

Search Result 164, Processing Time 0.02 seconds

Pyrolysis and combustion characteristics of dried sewage sludge in a fixed bed reactor (건조 하수 슬러지의 열분해 및 고정층 연소 특성 연구)

  • Kim, Minsu;Lee, Yongwoon;Park, Jinje;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.29-32
    • /
    • 2014
  • The practical route for disposal of sewage sludge becomes energy recovery by combustion after its ocean dumping is banned in 2012 in Korea. Due to the high moisture content, however, sewage sludge is required to be dried before transport and combustion. In this study, pyrolysis and combustion characteristics of dried sewage sludge was investigated in a small-scale fixed bed reactor in order to provide fundamental data for energy recovery of the fuel. As the first step of combustion, the primary products of pyrolysis were analyzed in a fixed bed reactor for the condensable volatiles (tar), non-condensable gases, and char. For the combustion characteristics, another fixed bed reactor was constructed to monitor the weight and temperature of the fuel particles during ignition and combustion under different air flow rates. The test results were used to derive the ignition and burning rates.

  • PDF

The City Rhinoreaction Research of the Corn Feed for the Heavy Metal Removal of the Pig Ordure Sludge Using the Citric Acid and Stability Evaluation (구연산을 이용한 돈분슬러지의 중금속 제거 및 안정성평가를 위한 사료용 옥수수의 시비반응 연구)

  • Oh, Tae-Seok;Kim, Chang-Ho;Choi, Bong-Su
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.4
    • /
    • pp.395-408
    • /
    • 2011
  • The study which it sees exclusions the copper and the zinc which contain in pig sludge, It study pig sludge resources fertilizer production which are rational, pig sludge resources fertilizers after seeding, silage corn it investigates growth characteristics and forage value, the result which investigates pig sludge resources fertilizers effectiveness with afterwards is same. With fertilizer ingredients in pig sludge chemical qualities, the content of the nitrogen and the phosphoric acid comes 4.4% to be 6.29%, pH 7.02 and content of the copper and the zinc which is a heavy metal which contains in pig sludge with 805 mg/kg and 1,704 mg/kg, it is a restrictive standard of the fertilizer, 300 mg/kg and 900 mg/kg it sees to be high, it manufactures citric acid 1 hydrate with the organic acid solution, heavy metals of pig sludge where it is a mixture ratio of the organic acid solution, it divides to 25%, 50%, 75% and 100% 4 kind levels, the result which measures the heavy metal exclusion ratio of the copper and the zinc, the mixture ratio of the organic acid solution to be many exclusion ratio of the copper and the zinc is showing a just interrelation, from organic acid solution 100% level content of pig sludge remains copper and zinc 330.03 mg/kg and 41.28 mg/kg, it shows the exclusion ratio of copper 59% zinc 97%. 'Cheonganok' growth characteristics with citric acid 1 hydrate, Treatment 2 and control growth characteristics etc, it exclusion the copper and the zinc it doesn't appear on significant difference statistically but, treatment 3 after only pig sludge in resources disposal where it seeding, growth characteristics of leaf area etc. is badness, it compares in control and treatment 2 the growth characteristics badness, it is appearing, it is caused by with disease and insects occurrence of $Ostrinia$ $furnacalis$ and brown spot, the damage was many. From forage value, Treatment 2 where it exclusion the heavy metal with the citric acid 1 hydrate with control it compares and there are not significant difference from crude protein and ADF and NDF contents etc., seeding only Pig Sludge in resources disposal treatment 3, it is caused by with $Ostrinia$ $furnacalis$ etc., trunk and aging of the leaf to be high ADF content is low. but from crude protein, the nitrogen ingredient which pig sludge has and interrelation it seemed and high numerical value were confirmed.

Development of the Optimal Composting Condition for the High Quality of Pig manure compost (고품질의 돈분 퇴비를 위한 합리적인 퇴비화 조건 개발)

  • Chang, Ki-Woon;Yu, Young-Seok;Min, Kyoung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.112-117
    • /
    • 2002
  • This study was conducted to induce the optimal composting conditions of pig manure mixed with sawdust and dried paper-mill sludge in the composting for production of high quality compost. Pig manure contains high water content and How C/N ratio because of comparatively high nitrogen content than sawdust and dried paper-mill sludge. Therefore the addition of dried paper-mill sludge and sawdust to the raw materials helps controlling the C/N and the water content of compost pile. The composting system used in the experiment was agitated static bed system. The physical properties of the mixed raw materials was not good at the working conditions in the early stage of composting. The temperature of compost heap reaches at $60^{\circ}C$within 5 day after starting composting in P-2 treatment mixed with pig manure and sawdust(56.6 : 43.4). Then the water content of P-2 was 58%. The pH in all treatments were slowly decreased as the composting was proceeded. Although the changes of T-C and T-N were not extended because of the short composting experiment period. Reduction rates of T-C in treatments were 5-12% without special difference. By considering the efficiency of composting in each of five treatments with pig manure the optimal water contents was about 57% level. Mixing a sawdust as a bulking agent was more positive than dried paper-mill sludge from a viewpoint of compost quality.

  • PDF

Effects of Raw Materials and Bulking Agents on the Thermophilic Composting Process

  • Tang, Jing-Chun;Zhou, Qixing;Katayama, Arata
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.925-934
    • /
    • 2010
  • Three typical biological solid wastes, namely, animal manure, garbage, and sewage sludge, were compared with regard to the composting process and the changes in microbial community structure. The effects of different bulking agents such as rice straw, vermiculite, sawdust, and waste paper were compared in manure compost. The differences in the microbial community were characterized by the quinone profile method. The highest mass reduction was found in garbage composting (56.8%), compared with manure and sludge (25% and 20.2%, respectively). A quinone content of $305.2\;{\mu}mol/kg$ was observed in the late stage of garbage composting, although the diversity index of the quinone profile was 9.7, lower than that in manure composting. The predominant quinone species was found to be MK-7, which corresponds to Gram-positive bacteria with a low G+C content, such as Bacillus. The predominance of MK-7 was especially found in the garbage and sludge composting process, and the increase in quinones with partially saturated long side-chains was shown in the late composting process of manure, which corresponded to the proliferation of Actinobacteria. The effects of different bulking agents on the composting process was much smaller than the effects of different raw materials. High organic matter content in the raw materials resulted in a higher microbial biomass and activity, which was connected to the high mass reduction rate.

Studies on Manufacturing Possibility of Paper Sludge-Cement Boards (II) - Physical and Mechanical Properties and SEM Observation - (제지(製紙) 슬러지-시멘트보드이 제조가능성(製造可能성)에 관(關)한 연구(硏究)(II) - 물리(物理)·기계적(機械的) 성질(性質) 및 SEM 측정(測定) -)

  • Kim, Sa-Ick;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.37-45
    • /
    • 1994
  • The possibility of reusing the paper sludge as a raw material of composition board mixed with cement was investigated. For the measurement of physical and mechanical properties, wood coment board and sludge combinend cement boards were fabricated with the three weigh ratios of paper sludge 10 % (SI), 20 % (S II) and 30 % (S III) to cement weight. For adding the cement hardning, $CaCl_2$ was also added to each mixed paste with the ratio of 1 %, 3 % and 5 % to cement weight, respectively. Crystal formation in paper sludge-, wood-cement composites was observed by scanning electron microscope. The results were summarized as follows. 1. Density and partial compressive strength of each specimens were relatively high in the order of sludge I, sludge II, Korean pine, Italian poplar and sludge III, sludge I, Korean pine, sludge II, Italian poplar and sludge III. 2. The mechanical properties of sludge-cement boards (S I and II) were higher than that of wood-cement boards prepared with Korean pine and Italian poplar. But the mechanical properties of wood-cement boards were improved by the adding of $CaCl_2$. 3. Water absorption and thickness swelling were increased with increase of sludge content to cement weight. 4. In SEM observation, sludge-cement composites showed sufficiently formed crystals but wood-cement composites showed poorly formed crystals.

  • PDF

Inhibition Mechanism of Ammonia Nitrogen on the Granules in an Upflow Anaerobic Sludge Blanket Reactor (암모니아성 질소 첨가에 따른 상향류 혐기성 블랭킷 반응조내 입상슬러지의 저해 기작)

  • Lee, Chae Young;Han, Sun Kee;Shin, Hang Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.993-997
    • /
    • 2007
  • The upflow anaerobic sludge blanket (UASB) reactor can be effective for treating simple organic compounds containing high concentration of ammonia nitrogen. The chemical oxygen demand (COD) removal efficiency was about 80% at ammonia nitrogen concentration up to 6,000 mg-N/L. This result also showed that it would be possible to treat propionate effectively at free ammonia nitrogen concentration up to 724 mg-N/L if sufficient time was allowed for adaptation. However the specific methanogenic activity (SMA) of granule was lower than that of granule in the reactor with lower ammonia nitrogen concentration. At 8,000 mg-N/L, the inhibition of high ammonia concentration was observed with evidence of increase of the volatile suspended solids (VSS) concentration in the effluent. It might be ascribed to the decrease in the content of extracellular polymer (ECP), which resulted to the sloughing off of obligated proton-reducing acetogens and heterogenotrophic methanogens from the exterior of granular sludge. This caused a great portion of the finely sludge to be easily washed out. Therefore, failure to maintain the balance between these two groups of microorganism cause accumulation of the hydrogen partial pressure in the reactor, which could have inhibited the growth of acetate utilizing methanogens.

A Study on Torrefaction Characteristics of Sewage Sludge (하수슬러지의 반탄화 특성에 관한 연구)

  • Lim, Dae-Won;Poudel, Jeeban;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.510-514
    • /
    • 2014
  • In this work, the effect of torrefaction on the basic characteristic of sewage sludge was studied to evaluate the energy potential as a solid fuel. Torrefaction experiments were performed at temperatures of $150{\sim}600^{\circ}C$. The torrefied sewage sludge was characterized by the energy yield, ash content, volatile fraction and high heating value (HHV). The gaseous products from torrefaction of the sewage sludge were also analyzed. Thermogravimetric analysis was carried out for the kinetic analysis of sewage sludge torrefaction. From this work, it was found that the ash content increased with an increase of the torrefaction temperature while the energy yield, HHV and volatile fraction decreased. It was also found that the emission of carbon monoxide and hydrocarbon gases started at $300^{\circ}C$ by the thermal degradation of volatile components in the sewage sludge.

Effects of Sewage Treatment on Characteristics of Sludge as a Composting Material (하수처리가 퇴비화를 위한 하수 슬러지 특성에 미치는 영향)

  • Kim, Jae-Koo;Kim, Jong-Soo
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • The effects of sewage treatment on characteristics of sludge as a composting material were investigated for a year during the initial operation at the full-scale Chunan sewage treatment plant. Due to the shortage of design capacity of belt press, a sludge dewatering unit, non-volatile solids were recirculating and concentrating in the treatment plant, resulting in an increase of MLSS and a decrease in F/M ratio at the activated sludge system. Special attention is required for long term operations since the increase of non-volatile solids in the plant would deteriorates the treatment efficiency. The sewage sludge of the Chunan sewage treatment plant showed 79.5% of water content, 11.6% of organic content, and C/N ratio of 6.1, and contained As 1.8 mg/kg, Cd 27 mg/kg, Hg <0.1 mg/kg, Pb 54 mg/kg, T-Cr 370 mg/kg, and Cu 1,100mg/kg of heavy metals. In order to be used as raw material for optimum composting, the sewage sludge requires bulking agents for moistrure/porosity control and a carbon source for adjusting C/N ratio. However, the sewage sludge is not adequate as a soil conditioner after composing due to a high content of heavy metals. If the sewage sludge has to he used as a soil conditioner after composting, it as required to identify and remove tire industrial wastewater portions in tire influent of the plant since heavy metals in the influent were mostly concentrated in dewatered sludge.

  • PDF

Release of Nutrients from Different Wasted Activated Sludges by Microwave Heating (다양한 활성 슬러지 공정에서 얻은 잉여 슬러지의 마이크로웨이브 가온과 영양물질의 방출)

  • Yang, Hoiweon;Ahn, Johwan;Kim, Jangho;Kim, Junghwan
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.701-708
    • /
    • 2018
  • Chemical batch tests were conducted to investigate the amount of nutrients that were released from the wasted activated sludge during microwave heating. For this study, three types of activated sludge were obtained from $A_2/O$, MLE and oxidation ditch (OD) processes. Polyphosphate-accumulating organisms in the activated sludge have a unique trait: they releases phosphate from the cell when they are exposed to high temperatures. The sludge obtained from the $A_2/O$ process released the largest amount of phosphate, followed by those from the MLE and OD processes. The release of phosphate increased with increasing polyphosphate content in the sludge under strongly alkaline or acidic conditions. Furthermore, ammonia and heavy metals were released with phosphorous. The largest amount of ammonia was observed from the sludge obtained from the MLE process. The release of heavy metals strongly depends on the pH conditions. Therefore, the chemical analysis results strongly suggest that both phosphorus and ammonia react with $Mg^{2+}$ or $Ca^{2+}$ to form metal complexes such as magnesium ammonium phosphate or hydroxyapatite under alkaline conditions.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.