• Title/Summary/Keyword: High power characteristics

Search Result 5,352, Processing Time 0.035 seconds

Electrical Characteristics of Oxide Layer Due to High Temperature Diffusion Process (고온 확산공정에 따른 산화막의 전기적 특성)

  • 홍능표;홍진웅
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.451-457
    • /
    • 2003
  • The silicon wafer is stable status at room temperature, but it is weak at high temperatures which is necessary for it to be fabricated into a power semiconductor device. During thermal diffusion processing, a high temperature produces a variety thermal stress to the wafer, resulting in device failure mode which can cause unwanted oxide charge or some defect. This disrupts the silicon crystal structure and permanently degrades the electrical and physical characteristics of the wafer. In this paper, the electrical characteristics of a single oxide layer due to high temperature diffusion process, wafer resistivity and thickness of polyback was researched. The oxide quality was examined through capacitance-voltage characteristics, defect density and BMD(Bulk Micro Defect) density. It will describe the capacitance-voltage characteristics of the single oxide layer by semiconductor process and device simulation.

POWER TRANSMISSION CHARACTERISTICS OF FEASIBLE NON-CONTACT PICK-UP COIL COUPLED TO HIGH-FREQUENCY POWER SUPPLY SYSTEM

  • Kuroda, Mitsuyoshi;Tsuda, Masanori;Okuno, Atsushi;Gamage, Laknath;Mutsuo, Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.447-451
    • /
    • 1998
  • This paper conducts a study on a non-contact power delivering system using high-frequency inverter with the purpose of discussing the non-contact electric power transmission characteristics through circuit analysis, magnetic analysis and feasible experiments. In this power delivering scheme, various properties pertaining to the non-contact transformer of the power system such as the design, the core depth, core material, primary side frequency etc. are considered with a view of improving the non-contact power dilivery to the secondary.

  • PDF

The considerations of a High Frequency DC-AC Inverter in a Short Range Wireless Power Transfer Applications (근거리 무선전력전송용 고주파 DC-AC 인버터 회로 고찰)

  • Park, Jae-Hyun;Kim, Chang-Sun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.37-38
    • /
    • 2010
  • For MHz-class high frequency inverter in wireless power transfer applications, the voltage/current surges can be occurred in power stage when driving on the inverter. And also, the high-frequency oscillations can be produced at a high switching frequency due to the parasitic elements. The voltage and current stresses of the switching devices lead to the switching losses. The efficiency of the high frequency inverter will be reduced. And the inverter circuit with the sudden voltage and current fluctuations also generates the noise such as the EMI. Zero voltage, zero current switching technique can be used to reduce the switching loss and the noise. The high power density and high efficiency can be obtained. In this paper, the high-frequency inverter for short-range wireless power transfer applications was discussed. The feasible inverter circuit is analyzed in the circuit operating characteristics and the results are verified by the simulation.

  • PDF

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

Review on Gallium Nitride HEMT Device Technology for High Frequency Converter Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • This paper presents a review of an improved high power-high frequency III-V wide bandgap (WBG) semiconductor device, Gallium Nitride (GaN). The device offers better efficiency and thermal management with higher switching frequency. By having higher blocking voltage, GaN can be used for high voltage applications. In addition, the weight and size of passive components on the printed circuit board can be reduced substantially when operating at high frequency. With proper management of thermal and gate drive design, the GaN power converter is expected to generate higher power density with lower stress compared to its counterparts, Silicon (Si) devices. The main contribution of this work is to provide additional information to young researchers in exploring new approaches based on the device's capability and characteristics in applications using the GaN power converter design.

A New Zero-Current Switched High Power Factor Rectifier for Power Conversion System for Telecommunication (통신용 전력변환장치를 위한 새로운 영전류 스위칭 방식의 고 역률 정류기)

  • Moon, Gun-Woo;Jung, Young-Seok;Kim, Marn-Go;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.132-134
    • /
    • 1993
  • A new Zero-Current Switched(ZCS) High Power Factor Rectifier for the. power factor correction is proposed. The proposed single phase rectifier enables a zero-current switching operation of all the power devices allowing the circuit to operate at high switching frequencies and high power levels. A dynamic model and a predictive current control technique for the ZCS-High Power Factor Rectifier(HPFR) are proposed. With the proposed dynamic model, an analysis for the internal operational characteristics is explored. With the proposed control technique, the unity power factor.

  • PDF

A study on the characteristics of high power factor AC/DC converter with Feedforward control (Feedforward 제어에 의한 고역률 AC/DC 컨버터의 톡성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Yoo, Byeong-Ku;Sin, Seung-Soo;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1244-1246
    • /
    • 2003
  • Conventional Switched Mode Power Supplies(SMPS) with diode-capacitor rectifier have distorted input current waveform with high harmonic content. Typically, these SMPS have a power factor lower than 0.65. To improve with this problem. the power factor correction(PFC) circuit of power supplies has to be introduced. Specially, to reduce size and manufacture cost of power conversion device, the single-stage PFC converter is increased to demand as necessary of study. In this case single-stage PFC converter has been used DC-DC converter with boost converter. However in this paper, it is studied flyback converter of high power factor, high efficiency by feedforward control. Also, the validity of designed and manufactured high power factor flyback converter is confirmed by simulation and experimental results.

  • PDF

Technical Trends in Next-Generation GaN RF Power Devices and Integrated Circuits (차세대 GaN RF 전력증폭 소자 및 집적회로 기술 동향)

  • Lee, S.H.;Lim, J.W.;Kang, D.M.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.71-80
    • /
    • 2019
  • Gallium nitride (GaN) can be used in high-voltage, high-power-density/-power, and high-speed devices owing to its characteristics of wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. In this study, we investigate the technology trends for X-/Ku-band GaN RF power devices and MMIC power amplifiers, focusing on gate-length scaling, channel structure, and power density for GaN RF power devices and output power level and output power density for GaN MMIC power amplifiers. Additionally, we review the technology trends in gallium arsenide (GaAs) RF power devices and MMIC power amplifiers and analyze the technology trends in RF power devices and MMIC power amplifiers based on both GaAs and GaN. Furthermore, we discuss the current direction of national research by examining the national and international technology trends with respect to X-/Ku-band power devices and MMIC power amplifiers.

Research of High data rate Power-Line Communication with Characteristics Analysis (전력선 채널 특성을 통한 고속 데이터 통신 방법 연구)

  • Kim, D.S.;Seo, J.W.;Kim, D.H.;Choi, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2499-2501
    • /
    • 2001
  • Today many researches are accomplished for power line communication. But It is very dangerous to communicate with devices using power line. Because power line is an candidate to cope with the existing communication channels. So It is need to be measured the properties of power line as communication channels, before successful communication system is possible. In this paper, we re-analysis the characteristics of power line and suggest an implementation technique for the high-data-rate power line communication modem.

  • PDF

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.