• Title/Summary/Keyword: High power buck converter

Search Result 239, Processing Time 0.027 seconds

Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery Systems

  • Li, Yan;Zheng, Trillion Q.;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.432-443
    • /
    • 2014
  • In order to improve the output efficiency of solar cells and to extend the life span of batteries, the input currents of converters are required to be continuous. If low output voltage ripple is required at the same time, it is obvious that the application of basic two-order converters (such as Buck and Boost derived converters) will not be good enough. In this paper, a lot of non-isolated push-pull converters (NIPPCs) with continuous current will be introduced due to their lower current stress, higher efficiency and better EMC performance. By decomposing the converters into push-pull cells, inductor and free-wheeling diodes, two families of NIPPCs based on single inductor and coupled inductor separately are systematically generated. Furthermore, characteristics analyses for some of the generated converters are also shown in this paper. Finally, two prototypes based on the corresponding typical topologies are built in the lab to verify the theoretical outcomes.

Analysis and Implementation of the Capacitive Idling SEPIC (용량성 아이들링 SEPIC의 분석 및 구현)

  • 최동훈;조경현;나희수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • As the portable electronic equipments are developed and popularized, the batteies are more important. To prolong life of the equipments, engineers demand to have batteries of high-power density and they are used to use Li-ion batteries popularly Li-ion batteries are better than conventional batteries, Ni-cd, about power density per volume and weight, but they have a fault that discharge voltage of them goes down. In order to maximize life of the Li-ion batterries, we have to use a converter which is suitable for the characteristic of Li-ion batteries. Therefore, capacitive idling SEPIC(Single Ended Primary Inductance Converter) that is derived from the SEPIC topology is proposed as a source of the Portable low-power applications. The converter has characteristics of buck-boost porformance. Besides, that makes it possible to increase the switching frequency by partial soft commutation of power switches through adding a diode and a switch. This paper is presented the characteristics, DC voltage conversion ratio, circuits of operation modes, of the converter and it is analized and implemented.

A High Voltage LED Drive IC using Voltage Clamp Bias (Voltage Clamp Bias를 사용한 고전압 LED Drive IC)

  • Kim, Seong-Nam;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.559-562
    • /
    • 2009
  • Due to the enormous progress achieved in light emitting diodes (LEDs) LEDs have been become a good solution for lightings. In LED driver for lighting applications, it is required high input voltage to drive more LEDs. Therefore, high-voltage should be changed to low-voltage to supply power for drive IC. In this paper, LED drive IC using voltage clamp bias circuit, it use a hysteretic-buck converter topology was proposed and verified through experiments.

Half Load-Cycle Worked Dual SEPIC Single-Stage Inverter

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei;Zheng, Chang-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • The two-stage converter is widely used in traditional DC/AC inverter. It has several disadvantages such as complex topology, large volume and high loss. In order to overcome these shortcomings, a novel half load-cycle worked dual SEPIC single-stage inverter, which is based on the analysis of the relationship between input and output voltages of SEPIC converters operating in the discontinuous conduction mode (DCM), is presented in this paper. The traditional single-stage inverter has remarkable advantages in small and medium power applications, but it can’t realize boost DC/AC output directly. Besides one pre-boost DC/DC converter is needed between the DC source and the traditional single-stage inverter. A novel DC/AC inverter without pre-boost DC/DC converter, which is comprised of two SEPIC converters, is studied. The output of dual SEPIC converters is connected with anti-parallel and half load-cycle control is used to realize boost and buck DC/AC output directly and work properly, whatever the DC input voltage is higher or lower than the AC output voltage. The working principle, parameter selection and the control strategy of the inverters are analyzed in this paper. Simulation and experiment results verify the feasibility of the new inverter.

Single-Phase CHFL Converter with Buck-type Active Power Decoupling for EV On-board Charger (전기자동차 온-보드 충전기를 위한 벅-타입 능동 전력 디커플링이 적용된 단상 CHFL 컨버터)

  • Kim, Seung-Gwon;Baek, Ki-Ho;Park, Sung-Min;Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.328-329
    • /
    • 2018
  • 본 논문에서는 전기자동차용 단상 온-보드 충전기를 위한 Cycloconverter-type High Frequency Link 회로구조와 능동 전력 디커플링 회로를 이용한 전기자동차용 고전력밀도 양방향 온-보드 충전기를 제안한다. 제안된 시스템은 전력변환부 단계를 줄이기 위한 AC-AC 변환회로와 DC링크 캐패시터를 최대한 줄이기 위해서 벅-타입 능동 전력 필터를 사용한다. 이를 통해 전력변환시스템 전체의 부피를 줄일 수 있으며, 전해 커패시터를 필름 커패시터로 대체하여 수명 문제를 해결할 수 있다. 제안된 시스템의 성능은 MATLAB/Simulink 시뮬레이션을 통해 검증하였다.

  • PDF

Design of high power factor induction heating system with 3 phase diode rectifier and buck converter (3상 다이오드 정류기와 벅 컨버터를 사용한 고역률 유도가열 전원장치)

  • Lee, Chang-Woo;Choi, Seung-Soo;Kim, In-Dong;Jung, Jang Han;Seo, Dong Hoan
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.345-346
    • /
    • 2017
  • 유도가열은 전자기 유도현상을 이용하여 금속체를 직접 가열하는 방식이므로 높은 변환 효율로 전기에너지를 열에너지로 변환시킬 수 있다. 현재 널리 사용되고 있는 단조용 유도 가열 전원 장치는 주로 위상제어 정류기를 이용한다. 하지만 입력단의 저 역률 및 입력전류 THD가 높은 단점을 가진다. 따라서 본 논문에서는 이러한 단점을 보안하기 위한 3상 다이오드 정류기와 벅 컨버터를 사용한 고 역률 유도가열 전원 장치를 제안한다.

  • PDF

A Study on the Development of A Rectifier Unit for Telecommunication Equipments with Free Input-Voltage Regulations (Free Voltage Regulation기능을 갖는 교환기용정류기 개발에 관한 연구)

  • Kim, Eun-Soo;Joe, Kee-Yeon;Rim, Geun-Hie;Kim, Yo-Hee;Hong, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.821-824
    • /
    • 1993
  • This paper deals with a $3{\phi}$ rectifier unit for telecommunication system. The rectifier unit is developed to Cope with the step-up of the AC input voltatage from 220V to 380V. By using a buck-type converter in the front-end, it keeps the input power factor high and reduces the voltage ripple in the dc output. It also has a very wide voltage regulation range, which lets the unit be applied for both the 220V and 380V input system. The study includes the power conversion scheme, control strategy, snubber circuit and finally, experimental results.

  • PDF

Bi-directional DC-DC converter with wide input voltage range and fast response for High Step-Up Applications (넓은 입력 전압범위와 빠른 응답속도를 갖는 고승압 양방향 DC-DC 컨버터)

  • Kim, Jaehoon;Kim, Sangjin;Kim, Sunju;Choi, Sewan;Shin, Hyunduk
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.201-202
    • /
    • 2018
  • 본 논문에서는 넓은 범위의 입력전압에서의 빠른 응답속도를 가진 고승압 양방향 컨버터를 제안한다. 제안하는 시스템은 2대의 Buck컨버터와 SRC(Seris Resonant Covnerter)로 구성된 3-stage 구조이며, 고승압이 가능하고 넓은 입력전압 범위에서 고효율을 성취할 수 있다. 또한 제안하는 컨버터는 모든 전압범위에서 빠른 응답속도로 제어를 하며 CC(Constant Current), CV(Constant Voltage), CP(Constant Power) 및 Pulse 동작을 수행한다. 제안하는 양방향 컨버터의 1.8kW급 시작품으로 실험을 통하여 타당성을 검증하였고, 최고효율 96%, 정격효율 90.8%를 달성하였다.

  • PDF

A Study on High Efficiency OBC with Wide Range Output Using Isolated Current-Fed PFC Converter (절연형 전류원 PFC 컨버터를 사용한 넓은 출력범위를 가지는 고효율 OBC에 대한 연구)

  • Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.99-105
    • /
    • 2019
  • OBC for battery charging of electric vehicles mainly consist of two stages including PFC circuit and isolated DC-DC converter circuit. In general, a non-isolated boost converter is used as the PFC circuit, and a resonant converter capable of ZVS (zero voltage switching) is used as the isolated DC-DC converter. In this paper, we propose an OBC composed of isolated current-fed type PFC circuit and buck DC-DC converter. The proposed OBC is easy to configure the circuit and controller, and can cope with a wide output range. In order to verify the validity of the proposed circuit, a prototype 3.3 ㎾ class prototype was fabricated. As a result, the maximum efficiency and the maximum power factor of 99.2% were confirmed under the operational stability and rated load conditions at the output voltage of 150V ~ 400V.

Development of High-Efficiency Low-Cost Drive System of Small-Size Electric Vehicles

  • Duong, Thuy-Lien;Tran, Thanh-Vu;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-110
    • /
    • 2012
  • This paper designs the high-efficiency and the low-cost drive system of the smallsize electric vehicles (EVs). The power circuit for driving the dc motor is designed by considering both the cost and efficiency. In order to reduce the conduction loss of MOTFET and diode for controlling an armature voltage, some MOSFETs and diodes at the armature are in parallel connection. An operating sequence for both the field current and the armature voltage according to the accelerator pedal angle is suggested for changing smoothly the rotating direction of dc motor. Through the simulation studies, the performances of the proposed methods are verified.