• Title/Summary/Keyword: High intensity discharge

Search Result 140, Processing Time 0.024 seconds

Analysis of Fourier Transform Jet Emission Spectra of CN $(B^{2}{\Sigma}^+{\rightarrow}X^{2}{\Sigma}^+)$

  • Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.349-353
    • /
    • 1994
  • The CN radical was generated in a jet with an inert buffer gas, helium from high voltage dc discharge of the precursor $CH_3CN$. The Fourier transform emission spectra of the O-O band of the $(B^2{\Sigma}^+{\to}X^2{\Sigma}^+)$ transition of CN have been obtained with a Bruker IFS-120HR spectrometer. The spectra show an anomalous distribution of rotational intensity which cannot be explained by a simple Boltzmann distribution. The analysis of the transition frequencies provides molecular constants with high accuracy for both the ground and the excited electronic states of the CN radical.

Effects of Nitrogen Gas Ratio on Nitride Layer and Microhardness of Tool Steel(SKH51) in Plasma Nitriding (플라즈마질화시 방전가스중 질소가스의 비율이 공구강(SKH51)의 질화층 및 미소경도에 미치는 영향)

  • Kim, Deok-Jae;Lee, Hae-Ryong;Gwak, Jong-Gu;Jeong, U-Chang;Jo, Yeong-Rae
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.447-451
    • /
    • 2002
  • Pulsed DC-plasma nitriding has been applied to form nitride layer having only a diffusion layer. The discharge current with the variation of discharge gases is proportional to the intensity of $N_2^+$ peak in optical emission spectroscopy during the plasma nitriding. The discharge current, microhardness in surface of substrate and depth of nitride layer increased with the ratio of $N_2\;to\;H_2$ gas in discharge gases. When the ratio of $N_2\;to\;H_2$ is lower than 60% in the discharge gases, high microhardness value of 1100Hv nitride layer which contains no compound layer has been formed.

A Study on Light Guide Luminaire Design using Prismatic Film (프리즘 필름을 이용한 조명기구 설계 연구)

  • Jeong, Hak-Geun;Han, Su-Bin;Jung, Bong-Man;Lee, Euy-Jun
    • KIEAE Journal
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2002
  • There are a number of practical uses for devices which are capable of piping large amounts of light: illumination of areas where there would be maintenance, safety, or security problems with electronic light sources; piping sunlight into indoor areas for illumination; and the conversion of high luminous efficacy, good color quality, high intensity discharge lamps into more acceptable linear of area sources of light. Prism light guides are hollow structures which pipe light by means of total internal reflectin(TIR). These devices are unique in their ability to combine the efficiency of TIR with the relatively low cost of hollow structure. An important application stems from their ability to transform a point source of light such as an incandescent or discharge lamp into a linear or area source of light or illumination. We report the development of an economical, flexible prismatic film for fabricating the light guide wall. This guide geometries and films are currently under development.

Modeling and Controller Design of an Automotive HID Lamp Ballast (자동차 헤드라이트용 고압 방전등 안정기 시스템의 모델링 및 제어기 설계)

  • Lee, In-Gyu;Choe, Seong-Jin;Lee, Gyu-Chan;Jo, Bo-Hyeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.545-550
    • /
    • 2000
  • This paper presents design and analysis of an HID lamp ballast for a fast turn on characteristics and stable operation. It produces a high open circuit voltage for the ignition and it is controlled to supply effectively the power required to shorten the warm-up period after the breakdown. The lamp modeling by empirical data is presented. It is very effective in the designing of the control loop in the steady-state operating region. A stable operation of the lamp power regulation in the steady state is achieved, which is crucial for the long life time and constant light output. Stability analysis of the system is performed and the results are verified through various simulation results and the hardware experiments.

  • PDF

Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge (헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구)

  • Bae, Byeongjun;Kim, Nam-Kyun;Yoon, Sung-Young;Shin, Jun-Seop;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.

A Study on Frequency-Modulated Methods for Reducing Acoustic Resonance in HID Lamp (고압방전램프의 음향공명감소를 위한 주파수변조에 관한 연구)

  • Kim, Gi-Jung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.622-626
    • /
    • 2001
  • HID(high intensity discharge)lamps are high pressure mercury lamp, high pressure sodium lamp and metalhalide lamp. metalhalide lamp among these lamps has considered to be one of the most effective artificial light sources and this lamp has good efficiency, good color rendition and good focusing capability, But the shortcorning of metalhalide lamp is known as acoustic resonance phenomena in the discharge tube when lighted by electronic ballast and then acoustic resonance cause various problems such as the arc instability, light output fluctuations. In this paper, to reduce the acoustic resonence phenomena, the electronic ballast was designed by three methods for high frequency operation wish frequency-modulated sinusodial waves in acoustic resonance frequency band. These frequency-modulated methods are resonance frequency and resonance frequency, resonance frequency and non-resonance frequency non-resonance frequency and non-resonance frequency Experiment results could't show the Presence of acoustic resonance visually and it proved that the resonance-generating conditions can be avoided by continuously changing the two operating frequencies in acoustic resonance band (20.59kHz∼94.2kHz).

  • PDF

Discharge Patterns of Yongnup, Daeam-san (대암산 용늪의 유출 패턴에 관한 연구)

  • ZHU, Ju-Hua;PARK, Jongkwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.271-282
    • /
    • 2011
  • The purpose of this study is to clarify the discharge patterns of Yongnup, Daeam-san. Many hydrographs were analyzed by the types of rising and falling stages, and the slope of those stages with the semi-log graph paper was a key point to distinguish the discharge patterns during rainstorms. The correlation between rainfall intensity and slopes of the second or third rising stage was higher than that between slopes of the first rising stage and rainfall intensity. Also, the coefficient of correlation between discharge decrement and the lapsed time from the peak to inflection point of hydrograph, during high water stages, was better than that during low water stages. The annual average discharge rate of Yongnup was 0.54 and the average direct runoff ratio was 0.14. The total discharge amount from Yongnup was about 410,000 tons for a water year, the monthly maximum amount emerged in September and the minimum amount was occurred in March. In summer, 37.7% was a seasonal maximum runoff ratio; on the other hand, 9.4% was a seasonal minimum runoff ratio in winter.

Prediction of Cavitation Intensity in Pumps Based on Propagation Analysis of Bubble Collapse Pressure Using Multi-Point Vibration Acceleration Method

  • Fukaya, Masashi;Ono, Shigeyoshi;Udo, Ryujiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • We developed a 'multi-point vibration acceleration method' for accurately predicting the cavitation intensity in pumps. Pressure wave generated by cavitation bubble collapse propagates and causes pump vibration. We measured vibration accelerations at several points on a casing, suction and discharge pipes of centrifugal and mixed-flow pumps. The measured vibration accelerations scattered because the pressure wave damped differently between the bubble collapse location and each sensor. In a conventional method, experimental constants are proposed without evaluating pressure propagation paths, then, the scattered vibration accelerations cause the inaccurate cavitation intensity. In our method, we formulated damping rate, transmittance of the pressure wave, and energy conversion from the pressure wave to the vibration along assumed pressure propagation paths. In the formulation, we theoretically defined a 'pressure propagation coefficient,' which is a correlation coefficient between the vibration acceleration and the bubble collapse pressure. With the pressure propagation coefficient, we can predict the cavitation intensity without experimental constants as proposed in a conventional method. The prediction accuracy of cavitation intensity is improved based on a statistical analysis of the multi-point vibration accelerations. The predicted cavitation intensity was verified with the plastic deformation rate of an aluminum sheet in the cavitation erosion area of the impeller blade. The cavitation intensities were proportional to the measured plastic deformation rates for three kinds of pumps. This suggests that our method is effective for estimating the cavitation intensity in pumps. We can make a cavitation intensity map by conducting this method and varying the flow rate and the net positive suction head (NPSH). The map is useful for avoiding the operating conditions having high risk of cavitation erosion.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

Discharging Voltage Control with Error Detecting for Search light of Ship (선박용 탐사조명 전원장치의 방전개시전압 제어와 조명 이상검출)

  • Park, Noh-Sik;Kwon, Soon-Jae;Lee, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.8-17
    • /
    • 2008
  • This paper presents a stable lighting method for HID lamp for ship from initial discharging current limit with discharging voltage control. The output voltage of the proposed control scheme is boosted for ignition, and the charging voltage is decreased by the resistor discharging. The proposed controller fires the initial discharge at the designed discharging voltage to limit the discharge current. After the discharging, constant current controller is used for brightness in steady state. The proposed control scheme can limit the initial discharge current using the starting point control without a complex voltage controller. so it can improve the life-time of HID lamp and get a stable discharge from restricted the initial discharge current. In order to improve the protection of the system, a simple instantaneous error detecting circuit for open state and short state of HID lamp is used. The proposed error detecting of HID lamp can protect the power system of lamp control. The effectiveness of the proposed controller is verified from the experiments of practical 2.5[kW] HID search light for ship.