• Title/Summary/Keyword: High Voltage System

Search Result 3,308, Processing Time 0.03 seconds

A Study on the Contents of the High Voltage Training for Engineering Officers on Ships (선박 기관사의 고전압 직무교육 내용에 관한 연구)

  • LEE, Yun-Hyung;SO, Myong-Ok;RYU, Ki-Tak
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1591-1601
    • /
    • 2016
  • In recent years most of large-sized merchant ships have been equipped with a high-voltage system. The ships demanding a lot of electric power adopt the high voltage such as 3.3kV, 6.6kV, 11kV. Gradually as the high voltage system is increased in the ships, engineering officers are more opportunities to operate the high voltage system. So the high voltage training for engineering officers was established in the STCW 1978 as amended by the Manila Amendments in 2010. According to this convention when the engineering officers want to board the high voltage ships on and after January 1 in 2017, they must take the high voltage training. This paper, firstly, analyzes the content of high voltage training in STCW convention and IMO model course. In addition, it reviews the parts need to be considered in the content of the high voltage training. Finally this paper proposes the contents of training model divided into theory and practice.

Optimization of protection System on the Railway High Voltage power System (철도 고압배전계통의 보호시스템 최적화 방안 연구)

  • 조웅기;창상훈;한성호;김왕곤
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.989-994
    • /
    • 2002
  • In case the fault occurs in railway high voltage power supply network, protective relaying system must selectively detect 1 wire ground fault of grounding or non-grounding system. And this study presents railway high voltage power supply system model using PSCAD/EMTDC Vet 3.08 for circuit analysis and fault studies. In this paper, we propose protection method of non-grounding system of railway high voltage power supply system. The result shows its usefulness.

  • PDF

Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor (친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템)

  • Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

Bi-polar High-voltage Pulse Generator Using Semiconductor switches (반도체 스위치를 이용한 양방향 고압 펄스 발생기)

  • Kim J.H.;Ryu M.Y.;Jung I.W.;Shenderey S.;Kim J.S.;Rim G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.291-293
    • /
    • 2003
  • A semiconductor switch-based fast hi-polar high voltage pulse generator is proposed in this paper The proposed pulse system is made of a thyristor based-rectifier, DC link capacitor, a push-pull resonant inverter, a high voltage transformer. secondary capacitor, a high voltage IGBT & diode stacks, and a variable capacitor. The proposed system makes hi-polar high voltage sinusoidal waveform using resonance between leakage inductance of the transformer and secondary capacitor and transfers energy to output load at maximum of the secondary capacitor voltage. Compared to previous hi-polar high voltage pulse power supply using nonlinear transmission line, the proposed pulse power system using only semiconductor switches has simple structure and gives high efficiency

  • PDF

Development of the Water Treatment System with High Performance Electromagnetic Field (고성능 전자장을 갖는 수처리 시스템의 개발)

  • Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • This paper presents the water treatment system with high performance electromagnetic field for a good quality of water. The electromagnetic field water treater consists of a solion, a solion body, and a high voltage converter. The high voltage converter is controlled by PWM current controller. The high voltage converter of 13W is designed for an isolation operation amp, an isolation current detector, and an over current protector. Using the high voltage PWM converter, the system with the proposed electromagnetic field water treater can be controlled easily. Simulation and experimental results show the effectiveness of the system strategy proposed for the scale rejection.

A Study on the Design of the New Structural SOI Smart Power Device with High Switching Speed and Voltage Characteristics (새로운 구조의 고속-고내압 SOI Smart Power 소자 설계에 관한 연구)

  • Won, Myoung-Kyu;Koo, Yong-Seo;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.239-242
    • /
    • 1999
  • In this paper, we report the process/device design of high-speed, high-voltage SOI smart power IC for mobile communication system, high-speed HDD system and the electronic control system of automobiles. The high voltage LDMOS with 70V breakdown voltage under 0.8${\mu}{\textrm}{m}$ design rule, the high voltage bipolar with 40V breakdown voltage for analog signal processing, the high speed bipolar with cut-off frequency over 20㎓ and LDD NMOS for high density were proposed and simulated on a single chip by the simulator DIOS and DESSIS. And we extracted the process/device parameters of the simulated devices.

  • PDF

High Voltage Wiring System Evaluation Methode of FCEV (Fuel Cell Electric Vehicle) (수소연료전지 자동차용 고전압 배선 시스템 평가 기술 개발)

  • Lim, Ji-Seon;Lee, Jeong-Hun;Lee, Hyo-Jeong;Na, Joo-Ran
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • FCEV uses 250 ~ 450 V instead of using 12 V battery. High voltage vehicle can cause electric shock, fire and explosion accident. Therefore, it has potential factors that can cause hazard of safety for users. United states of America and Europe legislate regulations such as ECE R100, FMVSS 305 for regulating electrical safety during driving or after collision. The company manufacturing high voltage components must do advanced R&D about Method for improving and confirming the safety of high voltage. We develop the specific hardware components of high voltage wiring system for the power train system and power supply system of Hyundai Motors FCEV. This paper shows test method of insulative performance for securing the electrical safety of high voltage components such as power cable, connectors and buss-bar, and proposals the guide line value for human safety of FCEV according to the test result of our development components.

Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

  • Chang, Choong-Koo;Hassan, Mostafa Ahmed Fouad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.211-217
    • /
    • 2016
  • Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV) high resistance grounding (HRG) system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

Development of Central Monitoring System for Insulation Diagnosis of High-Voltage Generator/Motor Stator Windings (고압 회전기 고정자 권선의 절연진단을 위한 중앙 집중 감시 시스템 개발)

  • Shin, Byoung-Chol;Yoon, Dae-Hee;Hwang, Don-Ha;Kim, Yong-Joo;Ju, Young-Ho;Kim, Jeong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1906-1908
    • /
    • 2000
  • The central monitoring system with on-line diagnosis of high-voltage generator/motor stator insulation is developed. The system is capable of remote diagnosis and monitoring partial discharges of high-voltage generator/motor stator insulation. GOMS(Generator On-line Monitoring System) with maximum of 9 input channels can measure and analyze the status of high-voltage motor stator insulation by on-line. The measured and analysis data are brought to the central monitoring system via modem to build database. The central monitoring system can diagnose and monitor the insulation status of several high-voltage generator/motor at any time. The insulation status of those machines can be enhanced by the database on partial discharges.

  • PDF

A Novel Control Strategy for Input-Parallel-Output-Series Inverter System

  • Song, Chun-Wei;Zhao, Rong-Xiang;Lin, Wang-Qing;Zeng, Zheng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • This paper presents a topology structure and control method for an input-parallel-output-series(IPOS) inverter system which is suitable for high input current, high output voltage, and high power applications. In order to ensure the normal operation of the IPOS inverter system, the control method should achieve input current sharing(ICS) and output voltage sharing(OVS) among constituent modules. Through the analysis in this paper, ICS is automatically achieved as long as OVS is controlled. The IPOS inverter system is controlled by a three-loop control system which is composed of an outer common-output voltage loop, inner current loops and voltage sharing loops. Simulation results show that this control strategy can achieve low total harmonic distortion(THD) in the system output voltage, fast dynamic response, and good output voltage sharing performance.