• Title/Summary/Keyword: High Pressure Pumping

Search Result 113, Processing Time 0.022 seconds

Development of the Air-lifting & Suction-pumping System to Remove the Noxious Deposit in the Underwater (수중 유해성 유기퇴적물의 수거를 위한 Air-lifting & Suction-pumping System 개발)

  • Kim, Seoung-Gun;Song, Do-Sung;Kang, Mun-Kyu;Lee, Sang-Moo;Choi, Young-Chan;Ko, Yu-Bong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.251-255
    • /
    • 2002
  • Eutrophic matters accumulated on the bottom of sea, river and lake cause red tide phenomenon in ocean and outbreak green algae in river and lake. Systems are developed to remove the noxious deposit. But the existing systems remove not only the eutrophic matters but also natural materials, sand, pebbles etc. that should remain at the bottom. This paper describes a new system that can safely, and economically take away the noxious deposit in underwater. High pressure water jet is used to induce vortices in the triangular suction section, and air-lifting pump to lift up the deposit. The mixture of the water and deposit is filtered through the drum filters. An under camera shows the under water situation along the moving direction of the system that is controlled by a remote operator. This remote controlled moving system obliterate the necessity of the diver that usually costs high. The experimental results show the effectiveness of the suggested system.

  • PDF

Effects of Temperature and Pressure on the Breakdown Characteristics of Liquid Nitrogen

  • Baek, Seung-Myeong;Joung, Jong-Man;Kim, Sang-Hyun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.171-176
    • /
    • 2003
  • For practical electrical insulation design of high temperature superconducting (HTS) power apparatuses, knowledge of the dielectric behavior of both liquid nitrogen (L$N_2$) and subcooled liquid nitrogen (SL$N_2$) are essential. To achieve SL$N_2$ at atmospheric pressure, cryostat was designed and constructed. By pumping up the L$N_2$ in the outer dewar, the temperature of L$N_2$ in the inner dewar at atmospheric pressure can be controlled. The breakdown characteristics of L$N_2$ in quasi-uniform and non-uniform electrical fields for temperatures ranging from 77 K to 65 K at atmospheric pressure and pressure ranging from 0.1 to 0.5 MPa were investigated experimentally. The experimental data suggested that the breakdown voltage (BDV) of L$N_2$ is both highly temperature and pressure dependent. We also carried out statistical analysis of the experimental results using the Weibull distribution. The Weibull shape parameter m for the sphere-to-plane electrodes in SL$N_2$ was estimated to be 11 to 18.

The Properties of RF Sputtered Zinc Tin Oxide Thin Film Transistors at Different Sputtering Pressure (스퍼터 증착된 Zinc Tin Oxide 박막 트랜지스터의 공정 압력에 따른 특성 연구)

  • Lee, Hong Woo;Yang, Bong Seob;Oh, Seungha;Kim, Yoon Jang;Kim, Hyeong Joon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Zinc-tin oxides (ZTO) thin film transistors have been fabricated at different process pressure via re sputtering technique. TFT properties were improved by depositing channel layers at lower pressure. From the analysis of TFTs comprised of multi layer channel, deposited consecutively at different sputtering pressure, it was suggested that the electrical characteristics of TFTs were mainly affected by interfacial layer due to their high conductance, however, the stability under the NBIS condition was influenced by whole bulk layer due to low concentration of positive charges, which might be generated by the oxygen vacancy transition, from Vo0 to $Vo^{2+}$. Those improvements were attributed to increasing sputtered target atoms and decreasing harmful effects of oxygen molecules by adopting low sputtering pressure condition.

Development of Heating and Cooling System with New Heat Exchange Cycle for High Efficiency and Peak Power Reduction Using Real time Constant Refrigerant Pressure Control (실시간 일정압력 제어기술을 적용한 냉난방장치의 피크부하 저감과 에너지 효율 향상을 위한 시스템 개발)

  • Choi, Sun-Young;Lee, Young-Kug;Choi, Myeong-Gwang;Choi, Tae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.53-58
    • /
    • 2015
  • Systemic heating and cooling air conditioning systems are popular in various industrial fields and even home. Recently, the rate of supply of this kind of multi-heat pump has been increased under ESCO financing supporting system. Generally the heat pumping system has a structural simplicity and easy installation benefits. and has good running efficiency under normal designed condition. But under extreme climate condition (over $+30^{\circ}C$, under $-10^{\circ}C$), this system exposes abnormal power consumption. It causes high progressive electric power rates and resultant peak power capacity of power plant. In this paper, a novel system concept of buffering refrigerant accumulator and constant pressure control system to relieve peak power load is proposed and this system's utility is verified with an prototype experimental system.

Improvement of Pump Performance and Suppression of Cavitation in a Centrifugal Pump (원심펌프의 성능개선과 캐비테이션 억제에 관한 연구)

  • Choi, Young-Do;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • Recent trends of a centrifugal pump are high speed in rotation and high pressure in head with high efficiency to meet the demands of industries. However, the newly developed pumps make trouble of pressure pulsation in the pumping system by performance instability of the pump. Moreover, cavitation, which is a main obstacle of high rotational speed in the pump, occurring in an impeller gives serious damages to the impeller and casing wall. The purpose of present study is not only to develop a simple method to improve pump performance but also to suppress the occurrence of cavitation in the centrifugal pump by use of J-Groove. J-Groove is a shallow groove installed on the casing wall in the meridional direction. The application of J-Groove to a centrifugal pump with a new type impeller of "semi-closed impeller" has proved its effectiveness as a useful countermeasure of the unstable pump performance and cavitation. The results show that the combination of semi-closed impeller and J-Groove can be applied successfully and improves both the pump performance and suction performance.

Frictional and Electrical Characteristics of Herringbone Grooved Bearing for Scanner motor

  • Jeong, Sung-Hoon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.146-149
    • /
    • 2001
  • Recently, laser printers have been developed to have high-speed laser scanner with hydrodynamic bearings. Among the bearings, herringbone grooved bearing (HGB) produces hydrodynamic pressure by high-speed rotating and so make the surfaces between the shaft and sleeve separated. Accordingly, the bearings with non-contact rotation are suitable to high-speed rotating and have long bearing life and reliability. HGB is a kind of journal bearing and uses oil for a lubricant. HGB has excellent stiffness and load carrying capacity. Also, HGB is leakage-free due to groove pumping action. Consequently, HGB is valuable to be applied to high-performance devices such as hard disk drive, copier, and so on.

  • PDF

Key Technologies for Super Tall Building Construction: Lotte World Tower

  • Kim, Gyu Dong;Lee, Joo Ho
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.205-211
    • /
    • 2016
  • This paper addresses the key technologies for supertall building construction based on the Lotte World Tower project in Korea. First, the mega-mat foundation construction technologies are shown, including ultra-low heat concrete, heat of hydration control programs, and the logistics plan. Then, high strength concrete technologies of 50~80 MPa are introduced and discussed within the context of the highest pumping record in Korea at 514.25 meters. Structural design concepts of gravity load and lateral force resistance systems are introduced, along with surveying systems using GNSS and temporary installation plans of special heavy equipment like tower cranes, hoists, and high pressure concrete pumps. If it is possible to coordinate these key technologies and others, optimizing for the building's design and construction, supertall building construction can be successfully completed.

Vacuum Characteristic of a Chamber Made of Mild Steel

  • Park, Chongdo;Ha, Taekyun;Cho, Boklae
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.84-89
    • /
    • 2015
  • The base pressure and outgassing rate of a mild steel chamber were measured and compared to those of a stainless steel chamber. A combined sputter-ion and non-evaporable getter pump with a nominal pumping speed of 490 l/s generated the base pressure of $2.7{\times}10^{-11}$ mbar in the mild steel chamber and $1.2{\times}10^{-10}$ mbar in the stainless steel chamber. The rate-of-rise measurements show that the mild steel has an extremely low outgassing rate of $2.6{\times}10^{-13}$ mbar $ls^{-1}cm^{-2}$, which is about one-order of magnitude smaller than the outgassing rate of the stainless steels. Vacuum annealing of the mild steel at $850^{\circ}C$ reduced the outgassing rate further to $8.8{\times}10^{-14}$ mbar $ls^{-1}cm^{-2}$, which was comparable to the outgassing rate of a heat treated stainless steel for extreme-high vacuum use.

The Study on Development of Performance in Cryogenic Piston Pump (초저온 피스톤 펌프의 성능 향상에 관한 연구)

  • Lee, Jongmin;Lee, Jonggoo;Lee, Kwangju;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.240-246
    • /
    • 2014
  • In order to develop a universal cryogenic piston pump of small size for increasing utilization of liquid hydrogen, dynamic compression performance of piston pump were evaluated and improvements were also discussed for piston rod and piston tip. The cryogenic piston pump has crosshead structure and inclined cup shape piston tip. As the results, it was found that i) insulation of heat flow from piston-rod part is required for stable operation ii) improving the self-clearance adjustment effect of piston tip and reducing piston eccentricity were desirable to promote pumping pressure and operating range.

Vacuum properties of CFC (carbon fiber composits) (탄소섬유복합재(CFC)의 진공특성)

  • 인상렬;박미영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.497-506
    • /
    • 1999
  • Carbon has been widely used for the material of plasma facing components in fusion experiment devices like a tokamak, because carbon has good thermal and mechanical properties. However carbon gas a relatively high ougassing rate. Therefore the amount and the surface area of the carbon material used in the vessel will determine the background pressure of the vacuum vessel. In this experiment influences of carbon on the vacuum performance was investigated by measuring chamber pressure, ougassing rater and gas spectrum of carbon fiber composite (CFC) samples in various situations, pumping out, chamber baking, carbon heating (250~$500^{\circ}C$), exposure to atmosphere for maintenance of in-vessel components, etc., occurring routinely during tokamak operations.

  • PDF