• Title/Summary/Keyword: Hermitian matrix

Search Result 42, Processing Time 0.017 seconds

THE GENERAL HERMITIAN NONNEGATIVE-DEFINITE AND POSITIVE-DEFINITE SOLUTIONS TO THE MATRIX EQUATION $GXG^*\;+\;HYH^*\;=\;C$

  • Zhang, Xian
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.51-67
    • /
    • 2004
  • A matrix pair $(X_0,\;Y_0)$ is called a Hermitian nonnegative-definite(respectively, positive-definite) solution to the matrix equation $GXG^*\;+\;HYH^*\;=\;C$ with unknown X and Y if $X_{0}$ and $Y_{0}$ are Hermitian nonnegative-definite (respectively, positive-definite) and satisfy $GX_0G^*\;+\;HY_0H^*\;=\;C$. Necessary and sufficient conditions for the existence of at least a Hermitian nonnegative-definite (respectively, positive-definite) solution to the matrix equation are investigated. A representation of the general Hermitian nonnegative-definite (respectively positive-definite) solution to the equation is also obtained when it has such solutions. Two presented examples show these advantages of the proposed approach.

THE EXTREMAL RANKS AND INERTIAS OF THE LEAST SQUARES SOLUTIONS TO MATRIX EQUATION AX = B SUBJECT TO HERMITIAN CONSTRAINT

  • Dai, Lifang;Liang, Maolin
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.545-558
    • /
    • 2013
  • In this paper, the formulas for calculating the extremal ranks and inertias of the Hermitian least squares solutions to matrix equation AX = B are established. In particular, the necessary and sufficient conditions for the existences of the positive and nonnegative definite solutions to this matrix equation are given. Meanwhile, the least squares problem of the above matrix equation with Hermitian R-symmetric and R-skew symmetric constraints are also investigated.

LINEAR MAPS PRESERVING PAIRS OF HERMITIAN MATRICES ON WHICH THE RANK IS ADDITIVE AND APPLICATIONS

  • TANG XIAO-MIN;CAO CHONG-GUANG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.253-260
    • /
    • 2005
  • Denote the set of n ${\times}$ n complex Hermitian matrices by Hn. A pair of n ${\times}$ n Hermitian matrices (A, B) is said to be rank-additive if rank (A+B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered.

HERMITIAN POSITIVE DEFINITE SOLUTIONS OF THE MATRIX EQUATION Xs + A*X-tA = Q

  • Masoudi, Mohsen;Moghadam, Mahmoud Mohseni;Salemi, Abbas
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1667-1682
    • /
    • 2017
  • In this paper, the Hermitian positive definite solutions of the matrix equation $X^s+A^*X-^tA=Q$, where Q is an $n{\times}n$ Hermitian positive definite matrix, A is an $n{\times}n$ nonsingular complex matrix and $s,t{\in}[1,{\infty})$ are discussed. We find a matrix interval which contains all the Hermitian positive definite solutions of this equation. Also, a necessary and sufficient condition for the existence of these solutions is presented. Iterative methods for obtaining the maximal and minimal Hermitian positive definite solutions are proposed. The theoretical results are illustrated by numerical examples.

THE GENERALIZATION OF STYAN MATRIX INEQUALITY ON HERMITIAN MATRICES

  • Zhongpeng, Yang;Xiaoxia, Feng;Meixiang, Chen
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.673-683
    • /
    • 2009
  • We point out: to make Hermtian matrices A and B satisfy Styan matrix inequality, the condition "positive definite property" demanded in the present literatures is not necessary. Furthermore, on the premise of abandoning positive definite property, we derive Styan matrix inequality of Hadamard product for inverse Hermitian matrices and the sufficient and necessary conditions that the equation holds in our paper.

  • PDF

TWO INEQUALITIES INVOLVING HADAMARD PRODUCTS OF POSITIVE SEMI-DEFINITE HERMITIAN MATRICES

  • Cao, Chong-Guang;Yang, Zhong-Peng;Xian Zhang
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.101-109
    • /
    • 2002
  • We extend two inequalities involving Hadamard Products of Positive definite Hermitian matrices to positive semi-definite Hermitian matrices. Simultaneously, we also show the sufficient conditions for equalities to hold. Moreover, some other matrix inequalities are also obtained. Our results and methods we different from those which are obtained by S. Liu in [J. Math. Anal. Appl. 243:458-463(2000)] and B.-Y Wang et al in [Lin. Alg. Appl. 302-303: 163-172(1999)] .

POSITIVENESS FOR THE RIEMANNIAN GEODESIC BLOCK MATRIX

  • Hwang, Jinmi;Kim, Sejong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.917-925
    • /
    • 2020
  • It has been shown that the geometric mean A#B of positive definite Hermitian matrices A and B is the maximal element X of Hermitian matrices such that $$\(\array{A&X\\X&B}\)$$ is positive semi-definite. As an extension of this result for the 2 × 2 block matrix, we consider in this article the block matrix [[A#wijB]] whose (i, j) block is given by the Riemannian geodesics of positive definite Hermitian matrices A and B, where wij ∈ ℝ for all 1 ≤ i, j ≤ m. Under certain assumption of the Loewner order for A and B, we establish the equivalent condition for the parameter matrix ω = [wij] such that the block matrix [[A#wijB]] is positive semi-definite.

A SIMPLE AUGMENTED JACOBI METHOD FOR HERMITIAN AND SKEW-HERMITIAN MATRICES

  • Min, Cho-Hong;Lee, Soo-Joon;Kim, Se-Goo
    • The Pure and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.185-199
    • /
    • 2011
  • In this paper, we present a new extended Jacobi method for computing eigenvalues and eigenvectors of Hermitian matrices which does not use any complex arithmetics. This method can be readily applied to skew-Hermitian and real skew-symmetric matrices as well. An example illustrating its computational efficiency is given.

A HOMOTOPY CONTINUATION METHOD FOR SOLVING A MATRIX EQUATION

  • Li, Jing;Zhang, Yuhai
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.327-342
    • /
    • 2018
  • In this paper, a homotopy continuation method for obtaining the unique Hermitian positive definite solution of the nonlinear matrix equation $X-{\sum_{i=1}^{m}}A^{\ast}_iX^{-p_i}A_i=I$ with $p_i$ > 1 is proposed, which does not depend on a good initial approximation to the solution of matrix equation.

THE EQUIVALENT FORM OF A MATRIX INEQUALITY AND ITS APPLICATION

  • ZHONGPENG YANG;XIAOXIA FENG
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.421-431
    • /
    • 2006
  • In this paper, we establish a matrix inequality and its equivalent form. Applying the results, some matrix inequalities involving Khatri-Rao products of positive semi-definite matrices are generalized.