Acknowledgement
Supported by : National Nature Science Foundation of China
References
-
W. N. Anderson, Jr., T. D. Morley, and G. E. Trapp, Positive solutions to
$X=A-BX^{-1}B^{\ast}$ , Linear Algebra Appl. 134 (1990), 53-62. https://doi.org/10.1016/0024-3795(90)90005-W - J. H. Avila, Jr., The feasibility of continuation methods for nonlinear equations, SIAM J. Numer. Anal. 11 (1974), 102-122. https://doi.org/10.1137/0711012
- B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson's equations, SIAM J. Numer. Anal. 7 (1970), 627-656. https://doi.org/10.1137/0707049
-
X. Duan, A. Liao, and B. Tang, On the nonlinear matrix equation
$X-{\Sigma}^m_{i=1}A^{\ast}_iX^{{\delta}i}A_i$ = Q, Linear Algebra Appl. 429 (2008), no. 1, 110-121. https://doi.org/10.1016/j.laa.2008.02.014 -
J. C. Engwerda, On the existence of a positive definite solution of the matrix equation
$X+A^TX^{-1}A=I$ , Linear Algebra Appl. 194 (1993), 91-108. https://doi.org/10.1016/0024-3795(93)90115-5 - C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999), no. 228, 1589-1603. https://doi.org/10.1090/S0025-5718-99-01122-9
-
V. I. Hasanov, Positive definite solutions of the matrix equations
$X{\pm}A^{\ast}X^{-q}A=Q$ , Linear Algebra Appl. 404 (2005), 166-182. https://doi.org/10.1016/j.laa.2005.02.024 - P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
-
J. Li, Solutions and improved perturbation analysis for the matrix equation
$X-A^{\ast}X^{-p}A=Q$ (p > 0), Abatr. Appl. Anal. 2013 (2013); DOI 10.1155/2013/575964. -
J. Li and Y. Zhang, Perturbation analysis of the matrix equation
$X-A^{\ast}X^{-p}A=Q$ , Linear Algebra Appl. 431 (2009), no. 9, 1489-1501. https://doi.org/10.1016/j.laa.2009.05.013 - J. Li and Y. Zhang, On the existence of positive definite solutions of a nonlinear matrix equation, Taiwanese J. Math. 18 (2014), no. 5, 1345-1364. https://doi.org/10.11650/tjm.18.2014.3747
-
Y. Lim, Solving the nonlinear matrix equation
$X=Q+{\Sigma}^m_{i=1}M_iX^{{\delta}i}M^{\ast}_i$ via a contraction principle, Linear Algebra Appl. 430 (2009), no. 4, 1380-1383. https://doi.org/10.1016/j.laa.2008.10.034 -
X.-G. Liu and H. Gao, On the positive definite solutions of the matrix equations
$X^s{\pm}A^TX^{-t}A=I_n$ , Linear Algebra Appl. 368 (2003), 83-97. https://doi.org/10.1016/S0024-3795(02)00661-4 -
Y. C. Mei, Uniqueness and numerical method for Hermitian positive definite solutions of nonlinear matrix equation
$X-A^{\ast}X^{-q}A=I$ (q > 1), Master's Thesis, Shandong Universiteit, Jinan, 2013. -
J. F. Wang, Y. H. Zhang, and B. R. Zhu, The Hermitian positive definite solutions of the matrix equation
$X+A^{\ast}X^{-q}A=I$ (q > 0), Chinese J. Numer. Math. Appl. 26 (2004), no. 2, 14-27; translated from Math. Numer. Sin. 26 (2004), no. 1, 61-72. - S. F. Xu, Matrix computation from control system, Higher education press, Beijing, 2011
-
X. Y. Yin and S. Y. Liu, Positive definite solutions of the matrix equations
$X{\pm}A^{\ast}X^{-q}A=Q$ $(q{\geq}1)$ , Comput. Math. Appl. 59 (2010), 3727-3739. https://doi.org/10.1016/j.camwa.2010.04.005 - X. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci. Comput. 17 (1996), no. 5, 1167-1174. https://doi.org/10.1137/S1064827594277041
-
X. Zhan and J. Xie, On the matrix equation
$X+A^{T}X^{-1}A=I$ , Linear Algebra Appl. 247 (1996), 337-345. https://doi.org/10.1016/0024-3795(95)00120-4 - F. Zhang, Matrix Theory, Universitext, Springer-Verlag, New York, 1999.