References
- Linear Algebra Appl. v.30 The matrix equation AXB + CYD = E J. K. Baksalary;R. Kala
-
Linear and Multilinear Algebra
v.16
Nonnegative definite and positive definite solutions to the matrix equation
$AⅩA^*$ = B J. K. Baksalary -
Linear Algebra Appl.
v.179
The symmetric solution of the matrix equations AX + XA =C,
$AXA^T$ +$BY B^T$ =C, and$(A^TXA,B^TXB)$ = (C,D) X. W. Chang;J. S. Wang - Linear Algebra Appl. v.88/89 Singular value and generalized singular value decompositions and the solution of linear matrix equations K. E. Chu
- J. Appl. Math. and Computing(old KJCAM) v.7 Algorithms for solving matrix polynomial equations of special form E. V. Dulov
- Bull. Malay. Math. Soc. v.21 Hermitian and nonnegative definite solutions of linear matrix equations J. GroB
-
Linear Algebra Appl.
v.321
Nonegative-define and positive solutions to the matrix equation
$AXA^*$ = B- revisited J. GroB - Acta Sci. Nat. Univ. Norm. Hunan v.19 The general solution of the matrix equation AXB + CYD = F (in Chinese) C. N. He
- SIAM J. Appl. Math. v.31 Hermitian and nonnegative definite solutions of linear martrix equations C. G. Khatri;S. K. Mitra
- Linear Algebra Appl. v.279 On solutions of matrix equation AXB + CYD = F G. P. Xu;M. S. Wei;D. S. Zheng
- J. appl. Math. and Computing(old KJCAM) v.5 Generalized stationary iterative method for solving linear systems J. H. Yun;S. W. Kim
-
Linear Algebra Appl.
The rank-constrained Hermitian nonnegative-definite and positive-definite solutions to the matrix equation
$AXA^*$ = B X. Zhang;M. -Y. Cheng - Applied Mathmatics and Computation Full-column Rank Solutions of the Matrix Equation AV= EVJ X. Zhang;S. Thompson;G. -R. Duan
-
Applied Mathmatics Letters
The general common nonnegative-definite and positive-definite solutions to the matrix equations
$AXA^* = BB^*$ and$CXC^* = DD^*$ X. Zhang;M. -Y. Cheng