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A SIMPLE AUGMENTED JACOBI METHOD FOR HERMITIAN
AND SKEW-HERMITIAN MATRICES

Chohong Min a, Soojoon Lee b and Se-Goo Kim c

Abstract. In this paper, we present a new extended Jacobi method for computing
eigenvalues and eigenvectors of Hermitian matrices which does not use any complex
arithmetics. This method can be readily applied to skew-Hermitian and real skew-
symmetric matrices as well. An example illustrating its computational efficiency is
given.

1. Introduction

In computing eigenvalues of matrices, there have been considerably much re-
searches focused on the QR method [3] and the Jacobi method [6]. The QR method
can be applied to general matrices, while the Jacobi method is restricted on real
symmetric matrices. For the case of real symmetric matrices, it was shown that the
Jacobi method performs better than the QR method [7]. Hacon in [4] extended the
Jacobi method to the case of skew-symmetric matrices by employing the Quaternion
rotation instead of the two-dimensional rotation of the Jacobi method. Goldstine and
Horwitz in [2] have extended the Jacobi method to normal matrices by plane unitary
transformations. For a non-normal matrix, it is not possible to use unitary transfor-
mations alone [1]. For general matrices, Ruhe in [8] extended the Jacobi method to
general matrices by unitary transformations and plane shears. The Jacobi-Davidson
method [9] was devised to obtain a few eigenpairs for large sparse matrices.

Henrici [5] proposed the direct extension of the Jacobi method to Hermitian
matrices and showed the quadratic convergence rate of his extended method. His
method used complex arithmetics in computing. We introduce a new extended
Jacobi method for Hermitian matrices without using complex arithmectics. Our
method constructs the real symmetric matrices augmented from Hermitian matrices,
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and apply a specially designed Jacobi method to the augmented matrices, which we
call an augmented Jacobi method. Our method is doing only real arithmetics. We
also note that the presented method is readily applicable to skew-Hermitian and real
skew-symmetric matrices, since the multiplication by i =

√−1 to skew-Hermitian
or real skew-symmetric matrices results in Hermitian matrices.

2. Brief Review of the Jacobi Method

The Jacobi method [6] is an efficient tool for finding the eigensystem of real
symmetric matrices. We summarize it in this section.

Definition For a square matrix A, we declare the following norms.

‖A‖Fr =
√∑

i,j

(aij)
2

‖A‖Off =
√∑

i 6=j

(aij)
2

‖A‖Diag =
√∑

i

(aii)
2

The Off norm measures how much the matrix is close to a diagonal matrix.

Lemma 2.1. If P is an orthgonal matrix, then ‖A‖Fr =
∥∥P T AP

∥∥
Fr

for any square
matrix A of the same size as P .

Proof. First note that ‖A‖2
Fr = tr

(
AT A

)
, then the argument is clear from

∥∥P T AP
∥∥2

Fr
= tr

((
P T AP

)T (
P T AP

))
= tr

(
P T AT AP

)
= tr

(
AT A

)
.

¤

From ‖A‖Fr =
∥∥P T AP

∥∥
Fr

and ‖A‖2
Fr = ‖A‖2

Off + ‖A‖2
Diag, we have the equiv-

alence relation
∥∥P T AP

∥∥
Off

< ‖A‖Off if and only if
∥∥P T AP

∥∥
Diag

> ‖A‖Diag.
Consider a symmetric matrix A, and assume an element apq 6= 0 with p 6= q.

Jacobi considered the following orthogonal matrix P whose similarity transformation
can efficiently eliminate the element.

Ppp = cos θ

Ppq = sin θ

Pqp = − sin θ(1)
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Pqq = cos θ

Pij = δij if i 6= p, q or j 6= p, q

for some angle φ. Using this orthogonal matrix, we apply a similarity transfor-
mation A′ = P T AP . Then A′ is symmetric and has the same elements as A except
the pth and qth row vectors and the pth and qth column vectors as follows.

A′pp = cos2 θApp − 2 sin θ cos θApq + sin2 θAqq

A′qq = cos2 θAqq + 2 sin θ cos θApq + sin2 θApp

A′pq = A′qp = (cos2 θ − sin2 θ)Apq + sin θ cos θ(App −Aqq)(2)

A′ip = A′pi = cos θApi − sin θAqi, if i 6= p, q

A′iq = A′qi = cos θAiq + sin θAip, if i 6= p, q

A′ij = Aij , if i, j 6= p, q.

Since the similarity transformation preserves the eigenvalues and changes the eigen-
vectors by a multiplication of P T , we can calculate the eigensystem of A from the
eigensystem of A′. To make the new matrix A′ closer to diagonal matrix, we choose
θ to set A′pq = 0, or cos(2θ)Apq + sin(2θ)App−Aqq

2 = 0. We briefly review the well
known theorem below, that will be extended in the next section.

Proposition 2.2. With the orthogonal matrix P in equation 1, the new matrix A′

is more diagonal than A in the sense that
∥∥A′

∥∥2

Off
= ‖A‖2

Off − 2 (apq)
2 .

Proof. By the lemma 2.1, we have ‖A′‖2
Fr = ‖A‖2

Fr. Using the relations ‖A′‖2
Fr =

‖A′‖2
Off+‖A′‖2

Diag and ‖A‖2
Fr = ‖A‖2

Off+‖A‖2
Diag, we instead show that ‖A′‖2

Diag =
‖A‖2

Diag + 2 (apq)
2. The diagonal elements of A′ are the same as those of A except

the pth and qth as shown in equation 2. The updates of the two diagonal elements
can be formulated in the following 2× 2 matrix equation.

(
a′pp a′pq

a′qp a′qq

)
=

(
cos θ − sin θ
sin θ cos θ

)(
app apq

aqp aqq

)(
cos θ sin θ
− sin θ cos θ

)

Applying lemma 2.1 to the above equation, we have
(
a′pp

)2 + 2
(
a′pq

)2 +
(
a′qq

)2 =
(app)

2 + 2 (apq)
2 + (aqq)

2. The angle θ was chosen to make a′pq = 0, so that
(
a′pp

)2 +(
a′qq

)2 = (app)
2 + 2 (apq)

2 + (aqq)
2. Now we have ‖A′‖2

Diag = ‖A‖2
Diag + 2 (apq)

2 that
comples the proof. ¤
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There are some discussions which element apq 6= 0 to be chosen, [reduced cyclic].
The best option in decreasing the Off norm is to select the largest one, i.e.

|apq| = max
i6=j

|aij | .

Proposition 2.3. Assume that the Jacobi method is sequentially applied to an N×N

symmetric matrix A with the maximum choice. Let A(n) be the nth stage, then, for
each n = 0, 1, 2, · · · ,

∥∥∥A(n)
∥∥∥

2

Off
≤ ‖A‖2

Off

(
1− 2

N2 −N

)n

.

Proof. Let
∣∣∣a(n)

pq

∣∣∣ = maxi6=j

∣∣∣a(n)
ij

∣∣∣, then
∥∥A(n)

∥∥2

Off
≤

∣∣∣a(n)
pq

∣∣∣
2 (

N2 −N
)
. Since

∥∥∥A(n+1)
∥∥∥

2

Off
=

∥∥∥A(n)
∥∥∥

2

Off
− 2

∣∣∣a(n)
pq

∣∣∣ ≤
∥∥∥A(n)

∥∥∥
2

Off

(
1− 2

N2 −N

)

for each n, we have the above inequality. ¤

3. Method 1 : Classical Jacobi Method on the Augmented
Matrix

Consider a Hermitian matrix H = A + iB, where A and B are real matrices. We
denote by H̃ the following augmented matrix:

H̃ =
(

A −B
B A

)

When H is an n× n Hermitian matrix, H̃ is a 2n× 2n real symmetric matrix. Let
λ be an eigenvalue of the Hermitian matrix H with its corresponding eigenvector
u + iv, where u and v are real column vectors, then we have

(A + iB)(u + iv) = λ(u + iv) ⇔
(

A −B
B A

)(
u
v

)
= λ

(
u
v

)
.

This shows that the eigensystems of H and H̃ are closely related:

• λ is an eigenvalue of H if and only if it is an eigenvalue of H̃.
• Associated with the same eigenvalue λ, u + iv is an eigenvector of H if and

only if ( u
v ) is an eigenvector of H̃.

• Associated with the same eigenvalue λ, ( u
v ) is an eigenvector of H̃ if and

only if (−v
u ) is an eigenvector of H̃.
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Figure 1. Computational supports of the Direct Jacobi Method (a)
and the Augmented Jacobi Method (b) applied to the augmented
real symmetric matrix

In particular, each eigenvector of H is repeated twice in H̃. Since H̃ is real and
symmetric, its eigenvalues and eigenvectors can be computed by the Jacobi method
in Section 2, and the eigenvalues and eigenvectors of H can be obtained through the
above relation between them. This direct approach of the Jacobi method, which we
call the direct Jacobi method, treats the matrix H̃ as a real symmetric method, and
it updates the half of its elements as depicted in Figure 1(a). In the next section,
we introduce a new Jacobi method that keeps the block structure of the matrix H̃,
and hence it updates only the elements of the shaded region in Figure 1(b).

We apply the Jacobi method on the real symmetric matrix H̃. Example shows
the first update of the matrix. Note that the block structure of H̃ was broken. Note
that the number of elements updated is 4N : since H̃ is symmetric, only the upper
triangular elements need be updated.

Proposition 3.1. Let H be a Hermitian matrix of N × N . Let the method 1 is
operated on the real symmetric matrix H̃, then

∥∥∥H̃(n)
∥∥∥

2

Off
≤

∥∥∥H̃
∥∥∥

2

Off

(
1− 1

2N2 −N

)n

.

Proof. Obvious ¤

Note on Skew-Hermitian Matrices

Consider an n× n skew-Hermitian matrix S = A + iB, where A and B are real
matrices. From the property of the skew-symmetry, AT = −A and BT = B. Let iλ

be an eigenvalue of the skew-Hermitian matrix S with its corresponding eigenvector
u + iv, where u and v are real column vectors, then we have

(A + iB)(u + iv) = iλ(u + iv) ⇔
(

B A
−A B

)( −v
u

)
= λ

( −v
u

)
.
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We denote the 2n × 2n real symmetric matrix on the right hand side by S̃. In the
similar way to the case of Hermitian matrices, the eigensystems of S and S̃ are
closely related. as follows.

• iλ is an eigenvalue of S if and only if λ is an eigenvalue of S̃.
• iλ and u + iv is an eigenpair of S if and only if λ and (−v

u ) is an eigenpair
of S̃.

• Associated with the same eigenvalue λ, (−v
u ) is an eigenvector of S̃ if and

only if ( u
v ) is an eigenvector of S̃.

Note that the block structure of S̃ is the same as H̃, and thus the augmented
Jacobi method is also applicable to S̃. This is not surprising since the multiplication
by i =

√−1 to skew-Hermitian matrices results in Hermitian matrices.

4. Method 2 : A New Jacobi Preserving the Symmetry

Method 1 broke the block symmetry structure of the augmented matrix. In this
section, we show a simple fix-up that can preserve the symmetry that will bring a
big saving in memory and speed. When

∣∣∣h̃pq

∣∣∣ = maxi6=j

∣∣∣h̃ij

∣∣∣ , there are two cases.
For each case we show that we can fix the symmetry. We modify the Jacobi method
in Section 2 to keep the block structure of H̃ so that we can reduce the half of the
operation counts and save memory space. Assume a 2n× 2n real symmetric matrix
H̃,

H̃ =
(

A −B
B A

)

with A = AT and B = −BT . Note that the augmented matrix H̃ has the block
structure:

• The two diagonal blocks are the same.
• The two off-diagonal blocks are the negative of each other.
• The diagonal blocks are symmetric.
• The off-diagonal blocks are skew-symmetric.

As in the Jacobi Method, we introduce a similarity transformation that reduces the
Off norm. If H̃ is not diagonal, there are two possible cases: either Apq 6= 0 or
Bpq 6= 0 for some p 6= q. In either case the similarity transformation keeps the
block structure of the augmented matrix, and the computational support of this
algorithm can be reduced to the half compared to the direct Jacobi method as
depicted in Figure 1.
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4.1. Case Bpq 6= 0. Suppose Bpq 6= 0 with 1 ≤ p, q ≤ n. Note that p 6= q since B

is skew-symmetric. We define an orthogonal matrix P̃ as follows

P̃ =
(

Q R
−R Q

)





Qpp = cos θ

Qqq = cos θ

Qij = δij otherwise





Rpq = sin θ

Rqp = sin θ

Rij = 0 otherwise

Note that Q is diagonal and R is symmetric. We do a similarity transformation

H̃ ′ = P̃ T H̃P̃ . Written in block structure H̃ ′ =
(

A′ −B′

−B′T C ′

)
, the block elements

are

A′ = C ′ = QAQ−RBQ + QBR + RAR

B′ = −B′T = −QAR + RBR + QBQ + RAQ.

Note that H̃ ′ =
(

A′ −B′
B′ A′

)
is again of the same block structure as H̃.

4.2. Case Apq 6= 0. Suppose Apq 6= 0 with 1 ≤ p, q ≤ n. We define an orthogonal
matrix P̃ as follows

P̃ =
(

Q 0
0 Q

)





Qpp = cos θ

Qqq = cos θ

Qpq = sin θ

Qqp = − sin θ

Qij = δij otherwise

Using the above orthogonal matrix, we do a similarity transformation H̃ ′ = P̃ T H̃P̃ .

Written in block structure H̃ ′ =
(

A′ −B′

−B′T C ′

)
, the block elements are

A′ = C ′ = QT AQ

B′ = −B′T = QT BQ.

Note that H̃ ′ =
(

A′ −B′
B′ A′

)
is again of the same block structure as H̃.
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4.3. Decreasing property of the Off norm. In this subsection, we show that
the similarity transformation reduces the Off norm so that the successive application
of the similarity transformation to the augmented matrix converges to a diagonal
matrix.

Proposition 4.1. Under the notations and hypotheses in this section, if θ is chosen
as in Section 2 so that H̃ ′

rs = 0 for 1 ≤ r, s ≤ 2n with r 6= s,

‖H̃ ′‖2
Off = ‖H̃‖2

Off − 4H̃2
rs.

Proof. Note that Frobenius norm does not change under a similarity transformation,
and that the Off norm of a real symmetric matrix is the substraction of its Frobenius
norm by the sum of the squares of its diagonal elements. Thus, ‖H̃ ′‖F = ‖H̃‖F ,
where ‖ · ‖F denotes Frobenius norm, and

‖H̃ ′‖2
Off = ‖H̃ ′‖2

F − 2
∑

i

A′2ii = ‖H̃‖2
F − 2

∑

i

A′2ii = ‖H̃‖2
Off + 2

∑

i

(
A2

ii −A′2ii
)

Thus, we only need to show
∑

i

(
A2

ii −A′2ii
)

= −2H̃2
r,s.

There are two cases: either H̃ ′
rs = A′pq or H̃ ′

rs = B′
pq for 1 ≤ p, q ≤ n. First,

assume that H̃ ′
rs = A′pq. In this case A′ is QT AQ and has the same elements as

appeared in Section 2. An easy calculation shows A′2pp + A′2qq = A2
pp + A2

qq + 2A2
pq

and A′ii = Aii for i 6= p, q. Thus
∑

i

(
A2

ii −A′2ii
)

= A2
pp + A2

qq −A′2pp −A′2qq = −2A2
pq = −2H̃2

rs.

We now assume that H̃ ′
rs = B′

pq. Then

A′pp = cos2 θApp + 2 sin θ cos θBpq + sin2 θAqq

A′qq = cos2 θAqq − 2 sin θ cos θBpq + sin2 θApp

A′ii = Aii if i 6= p, q.

and A′ii has the same formula as the previous case except Apq replaced by−Bpq. Thus

the same calculation as the previous case shows that
∑

i

(
A2

ii −A′2ii
)

= −2B2
pq =

−2H̃2
rs. This completes the proof. ¤

Proposition 4.2. Let H be a Hermitian matrix of N × N . Let the method 2 be
operated on the real symmetric matrix H̃, then

∥∥∥H̃(n)
∥∥∥

2

Off
≤

∥∥∥H̃
∥∥∥

2

Off

(
1− 1

N2 −N

)n

.
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Proof. H̃ has 4N2 − 2N number of off diagonal elements. Since the method pre-
serves the block-symmetry structure, the diagonal elements in the upper-right and

lower-bottom blocks keeps zero throughout the iteration. Therefore
∥∥∥H̃(n)

∥∥∥
2

Off
≤

(
H̃rs

)2 ((
4N2 − 2N

)− 2N
)

for
∣∣∣H̃rs

∣∣∣ = maxi 6=j

∣∣∣H̃(n)
ij

∣∣∣. From the above propoosi-

tion
∥∥∥H̃(n+1)

∥∥∥
2

Off
≤

∥∥∥H̃(n)
∥∥∥

2

Off

(
1− 1

N2−N

)
, and follows the inequaality . ¤

A note on the block structure of eigenvector matrix. We sequentially con-
struct eigenvalue matrix D̃ and eigenvector matrix Ṽ as follows: Starting from
D̃ := H̃ and Ṽ := I, find the largest off-diagonal element D̃pq of D̃ in magnitude
and then apply the similarity transformation to update D̃ := P̃ T D̃P̃ and Ṽ := Ṽ P̃

until D̃ becomes diagonal. Note that Ṽ has the same block structure as H̃, and
hence only its half elements need to be stored and updated.

5. Example

5.1. Example of Hermitian matrix. Consider an N × N Hermitian matrix H

whose elements are given by Hij =
(
(i + j)2 + i (i− j)3

)
. When N = 3, H and its

associated real symmetric matrix H̃ are as follows.

H =




4 9− i 16− 8i
9 + i 16 25− i

16 + i 25 + i 36


 , H̃ =




4 9 16 0 1 0
9 16 25 −1 0 1

16 25 36 0 −1 0
0 −1 0 4 9 16
1 0 −1 9 16 25
0 1 0 16 25 36




Note that H̃23 = 25 is the maximum in absolute value among the off-diagonal
elements of H̃. The classic Jacobi method and the block-symmetry Jacobi eliminate
the element in the following ways.

H̃(1) =




4.000 18.295 1.517 −0.000 1.000 8.000
18.295 52.926 0.000 −7.185 −0.828 0.561
1.517 0.000 -0.926 −3.657 −0.561 −0.828
-0.000 -7.185 -3.657 4.000 9.000 16.000
1.000 -0.828 -0.561 9.000 16.000 25.000
8.000 0.561 -0.828 16.000 25.000 36.000




(classic Jacobi)
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Figure 2. Convergences of the Jacobi methods for the Hermitian ma-
trix H with N = 10

H̃(1) =




4.000 18.295 1.517 0 7.185 3.657
18.295 52.926 0.000 7.185 0 −1.000
1.517 0.000 -0.926 3.657 −1.000 0

0 −7.185 −3.657 4.000 18.295 1.517
-7.185 0 1.000 18.295 52.926 0.000
-3.657 1.000 0 1.517 0.000 −0.926







block-
-symmetric

Jacobi




Using the symmetric structures, only the shaded elements are stored and updated.
For an N × N Hermitian matrix, the classic Jacobi method is required to store
2N2 + N number of elements and to update 4N number of elements in one step.
On the other hand, the block-symmetric Jacobi method is required to store N2

number of elements and to update 4N number of elements in one step. Proposition
3.1 and 4.2 show that the block-symmetric Jacobi method converges faster than the
classic Jacobi. Figure 2 compares the two methods in decreasing the Off norms,
and confirms the expectation of the propositions. Until the convergence of the Off
norm within a machine precision 10−8, the block-symmetric Jacobi method took
only a half number of iterations compared with the classic Jacobi. Recalling that
the same number of elements are updated in both methods, we observe that the
block-symmetric Jacobi method consumes a half times less memory and performs
twice faster than the classic Jacobi.
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5.2. Example of skew-Hermitian matrix. Consider an N ×N skew-Hermitian
matrix S with Sij =

(
sin (i− j) + i 1

i+j−1

)
for each i and j. When N = 3, S and its

associated real symmetric matrix S̃ are as follows.

S =




0.00 + i · 1.00 −0.84 + i · 0.50 −0.91 + i · 0.33
0.84 + i · 0.50 0.00 + i · 0.33 −0.84 + i · 0.25
0.91 + i · 0.33 0.84 + i · 0.25 0.00 + i · 0.20




S̃ =




−1.00 −0.50 −0.33 0.00 −0.84 −0.91
−0.50 −0.33 −0.25 0.84 0.00 −0.84
−0.33 −0.25 −0.20 0.91 0.84 0.00
−0.00 0.84 0.91 −1.00 −0.50 −0.33
−0.84 −0.00 0.84 −0.50 −0.33 −0.25
−0.91 −0.84 −0.00 −0.33 −0.25 −0.20




Note that
∣∣∣S̃34

∣∣∣ is the maximum among the off-diagonal elements of S̃. Eliminat-
ing the element, the classic Jacobi method and the block-symmetric Jacobi method
result in the followings.

S̃(1) =




0.393 0.431 −0.182 0.279 −0.251 −0.000
0.431 -0.333 −0.250 0.841 0.000 −0.879

-0.182 -0.250 -0.200 0.909 0.841 −0.279
0.279 0.841 0.909 -1.000 −0.500 −0.182

-0.251 0.000 0.841 -0.500 -0.333 −0.841
-0.000 -0.879 -0.279 -0.182 -0.841 -1.593




(classic Jacobi)

S̃(1) =




-0.393 −0.431 0.333 0.000 −0.251 0.000
-0.431 0.333 0.841 0.251 0.000 −0.879
0.333 0.841 1.593 −0.000 0.879 0.000
0.000 0.251 −0.000 −0.393 −0.431 0.333

-0.251 0.000 0.879 −0.431 0.333 0.841
0.000 -0.879 0.000 0.333 0.841 1.593







block-
-symmetric

Jacobi




Same as in the previous example, only the shaded elements are stored and taken
care of. For an N ×N skew-Hermitian matrix, the classic Jacobi method is required
to store 2N2 + N number of elements and to update 4N number of elements in
one step. On the other hand, the block-symmetric Jacobi method is required to
store N2 number of elements and to update 4N number of elements in one step.
Figure 3 compares the two methods in decreasing the Off norms, and confirms the
expectation of the propositions 3.1 and 4.2. Until the convergence of the Off norm
within a machine precision 10−8, the block-symmetric Jacobi method took only
a half number of iterations compared with the classic Jacobi. Recalling that the
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Figure 3. Convergences of the Jacobi methods for the skew-
Hermitian matrix S with N = 10

same number of elements are updated in both methods, we observe that the block-
symmetric Jacobi method consumes a half times less memory and performs twice
faster than the classic Jacobi.

5.3. Example of matrix with repeating eigenvalues. If a Hermitian matrix
has distinct eigenvalues, each eigenvector appears once again after multiplied by i

in the augmented matrix and any of the repeated can be chosen safely. However,
the safe choice is not guaranteed any more in the presence of eigenvalue having
multiplicity. Consider the following Hermitian matrix having eigenvalues 2 and −1.


1 1 i
1 1 −i
−i i 1




The Jacobi method directly applied to the augmented matrix as in Section 3 pro-
duces the eigenvalue matrix D̃ and eigenvector matrix Ṽ as appeared below. The
decimal points after the fourth were skipped.

D̃ =




2.000 0.000 0.000 0.000 0.000 0.000
0.000 2.000 0.000 0.000 0.000 0.000
0.000 0.000 2.000 0.000 0.000 0.000
0.000 0.000 0.000 2.000 0.000 0.000
0.000 0.000 0.000 0.000 −1.000 0.000
0.000 0.000 0.000 0.000 0.000 −1.000



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Ṽ =




0.707 0.000 −0.408 0.000 0.000 0.577
0.707 0.000 0.408 0.000 0.000 −0.577
0.000 0.707 0.000 −0.408 0.577 0.000
0.000 0.707 0.000 0.408 −0.577 0.000
0.000 0.000 0.000 0.816 0.577 0.000
0.000 0.000 0.816 0.000 0.000 0.577




Associated with eigenvalue 2, the above results read that we need to select two

linearly independent vectors from the four vectors coming from the first four column
vectors of Ṽ .




0.707
0.707

0


 ,




0.707i
0

0.707


 ,



−0.408

0.408
0.816i


 ,




0.408i
0.816i
−0.408




In the above case, the first and the third one should be chosen to keep the orthogo-
nality between eigenvectors.

If we do the same as above for a diagonal matrix with diagonal elements 0, 0
and 1, the direct Jacobi method stops at no step and after the sorting, the first
and the second columns should be chosen as eigenvectors out of the four vectors.
Thus after the computation of the direct approach, the existence of any repeating
eigenvalues should be checked, and the selection process of eigenvectors should be
also accompanied.

On the other hand, the augmented Jacobi method keeps the block structure and
we are free from the above selection process: we can just safely take the first half
block. For the same matrix, the augmented Jacobi method produces the following
results.

D̃ =




2.000 0.000 0.000 −0.000 −0.000 −0.000
0.000 2.000 0.000 0.000 −0.000 −0.000
0.000 0.000 −1.000 0.000 0.000 −0.000
0.000 0.000 0.000 2.000 0.000 0.000

−0.000 0.000 0.000 0.000 2.000 0.000
−0.000 −0.000 0.000 0.000 0.000 −1.000




Ṽ =




0.707 0.000 −0.577 −0.000 −0.408 −0.000
0.707 0.000 0.577 −0.000 0.408 −0.000
0.000 0.816 0.000 −0.000 −0.000 0.577
0.000 0.408 0.000 0.707 0.000 −0.577
0.000 −0.408 0.000 0.707 0.000 0.577
0.000 0.000 −0.577 0.000 0.816 0.000



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Associated with eigenvalue 2, the first and second column vectors of Ṽ are automat-
ically orthogonal and can be safely chosen as eigenvectors.

Also for skew-Hermitian matrices, with the same reason, the augmented Jacobi
method is free from the comparison of eigenvalues and selection process of eigenvec-
tors that might be necessary to the direct Jacobi method.

6. Conclusion

In this work, a new extended Jacobi method has been developed for computing
eigenvalues and eigenvectors of Hermitian matrices. This method does not use any
complex arithmetics, while a known Jacobi-like method for Hermitian matrices does.
It can also be easily applied to skew-Hermitian and real skew-symmetric matrices
just by switching blocks of augmented matrices. It is computationally efficient in
choosing eigenvectors and works for any Hermitian matrices.
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